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Abstract

In this paper we present and validate a new
synthetic dataset for training visual entailment
models. Existing datasets for visual entailment
are small and sparse compared to datasets for
textual entailment. Manually creating datasets
is labor-intensive. ~We base our synthetic
dataset on the SNLI dataset for textual entail-
ment. We take the premise text from SNLI
as input prompts in a generative image model,
Stable Diffusion, creating an image to replace
each textual premise. We evaluate our dataset
both intrinsically and extrinsically. For extrin-
sic evaluation, we evaluate the validity of the
generated images by using them as training data
for a visual entailment classifier based on CLIP
feature vectors. We find that synthetic train-
ing data only leads to a slight drop in quality
on SNLI-VE, with an F-score 0.686 compared
to 0.703 when trained on real data. We also
compare the quality of our generated training
data to original training data on another dataset:
SICK-VTE. Again, there is only a slight drop
in F-score: from 0.400 to 0.384. These re-
sults indicate that in settings with data sparsity,
synthetic data can be a promising solution for
training visual entailment models.

1 Introduction

Natural language inference (NLI) is a classification
problem for pairs of two texts, a premise and a
hypothesis. The pair is labeled as entailment (the
premise entails the hypothesis), neutral or contra-
diction (the hypothesis contradicts the premise).
In visual entailment (VE) tasks (Xie et al., 2019),
the premise is substituted by an image, while the
hypothesis is still in text form.

In order to create and train effective models for
VE, large datasets are needed. While datasets of
images combined with hypotheses and labels do
exist, they are relatively small and sparse com-
pared to datasets for textual entailment. Existing
datasets are SNLI-VE (Xie et al., 2019) and SICK-
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VTE (Iokawa et al., 2024) which are both based on
NLI datasets and which were created by manual la-
bor leveraging Amazon Mechanical Turk workers.
In this paper we evaluate the use of generative Al
for VE dataset creation which would allow cheaper
and easier dataset creation. This is done by first
generating a synthetic dataset, of which we then
verify the validity. We introduce a synthetic version
of the SNLI-VE dataset called Synthetic-NLI-VE
and show how models trained on this dataset have
similar performance when tested on real data com-
pared to models trained on real data.

In summary, the contributions of this paper are
threefold: (1) we present the new dataset Synthetic-
NLI-VE!; (2) we find that the performance of mod-
els trained on the generated dataset have similar
performance compared to models trained on real
data; (3) A cross-data evaluation shows that gener-
alizability of visual entailment models to a different
dataset is poor, whether or not the training set was
generated or original.

2 Related work

Visual entailment and dataset creation The
idea of visual entailment was first proposed by Xie
et al. (2019). For this task they introduce the Ex-
plainable Visual Entailment (EVE) model, based
on Attention Visualization. In the same paper the
authors introduce the SNLI-VE dataset (Section 3).
Antol et al. (2015) introduced a dataset for visual
question answering (QA). They used the Microsoft
Common Objects in Context (MS COCO) dataset
(Lin et al., 2014) as a starting point: ~200k im-
ages of real-world scenes with 5 captions per im-
age. They added 50k images of abstract scenes for
which they also collected 5 captions per image.
Marelli et al. (2014) created the SICK dataset.
SICK (sentences involving compositional knowl-
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edge) contains sentence pairs with both relatedness
scores and entailment labels. This dataset was cre-
ated by pairing the Flickr8K dataset (Hodosh et al.,
2013) and the SemEval-2012 STS data (Agirre
et al., 2012) and having Amazon Mechanical Turk
workers annotate them with both similarity scores
and entailment labels. Wijnholds and Moortgat
(2021) created the Dutch version of SICK using a
semi-automatic translation. Bowman et al. (2015)
introduced the SNLI dataset on which the afore-
mentioned SNLI-VE was based, with as motivation
that the SICK dataset is too small and not balanced
enough. For SNLI they created a balanced dataset
of around ~500k sentence pairs compared to the
~10k in the SICK dataset.

There are also efforts made to improve existing
datasets. This was already the case with Goyal
et al. (2017), who improved and extended the
VQA dataset resulting in the VQA-v2 dataset. The
dataset was improved by, among other things, re-
ducing bias and extended it by adding more images.
This has also been done for the SNLI-VE dataset by
Do et al. (2021) who created the e-SNLI-VE-2.0.

Synthetic data Unlike the largely human made
datasets that were previously discussed, the
CLEVR dataset (Johnson et al., 2016) is automat-
ically generated. This dataset contains images of
abstract shapes combined with automatically gen-
erated questions. The images were created by ran-
domly sampling a scene graph and rendering it us-
ing the open-source 3D rendering software Blender.

Yuan et al. (2024) proposed an evaluation frame-
work for assessing synthetic data generated by
large language models (LLMs). This framework in-
cludes measures for fidelity, utility and privacy. In
this work, we only focus on the fidelity and utility
of the generated data.

Some research suggests that using synthetic
datasets for model training could have a negative
effect on performance in the future, if generated
datasets are used for training computer vision mod-
els (Hataya et al., 2023). As opposed to synthetic
datasets used to train generative models, the im-
ages that we generate are used to train classification
models. Furthermore, these classification models
are evaluated on original data, ensuring good real
world generalizability.

3 Data

In this work we use two datasets which we briefly
describe in this section.

SNLI-VE This was introduced by (Xie et al.,
2019), by combining the SNLI dataset (Bowman
et al., 2015) with the Flickr30k dataset (Young
et al., 2014). The Flickr30k dataset was created by
taking 31,783 photos of everyday activities which
were harvested from Flickr. Each image receives 5
different captions resulting in 158,915 captions in
total. Figure 3 in the appendix shows an example
of an image and its captions.

The SNLI dataset (Bowman et al., 2015) is a
well known dataset specifically created for natural
language inference. In short, it was constructed by
having Amazon Mechanical Turk workers gener-
ate 3 hypotheses per caption, where captions came
from the Flickr30k dataset. From this, Xie et al.
(2019) could therefore create the SNLI-VE dataset
by replacing each premise by the original corre-
sponding image. The dataset contains a total of
31,783 images, 157,567 premises and 565,286 hy-
potheses.

SICK-VTE Along the lines of the creation of
SNLI-VE, Iokawa et al. (2024) introduces SICK-
VTE, a visual entailment version of (a subset of)
the SICK dataset (Marelli et al., 2014), but with
an additional multilingual component, including
also the Dutch (Wijnholds and Moortgat, 2021)
and Japanese (Yanaka and Mineshima, 2022) trans-
lations of the SICK dataset. The construction of
the original SICK dataset was based on sentence
transformation rules over image captions instead of
human-generated hypothesis. By construction the
dataset contains only cases of Entailment and Con-
tradiction: for 488 unique images there are 2,899
sentence pairs, with 1,930 examples of Entailment
and 969 examples of Contradiction.

4 Methods

We generate a synthetic dataset as described in §4.1.
We then report on the intrinsic evaluation of image
quality by comparing the generated images directly
with the original images based on a similarity analy-
sis in §4.2. Finally, we perform extrinsic evaluation
of synthetic data, comparing it to original data for
visual entailment model training in §4.3.

4.1 Image Generation

Our approach for creating the generated dataset is
to use the premise text from SNLI as input prompts
in a generative model, creating an image for every
premise caption. This results in a dataset similar to
SNLI-VE, however, instead of multiple premises



referencing the same image, here the resulting
dataset has a unique image for every premise. We
refer to the generated images as child images to ex-
press the fact that they were indirectly derived from
an original parent image. Examples of generated
child images are shown in Figure 1.

Our choice of generative model is Stability AI’s
Stable Diffusion”. The ability to run the model
locally as opposed to the cloud based solutions
from OpenAl and Midjourney was essential for
generating the large amount of images necessary
for our work.

The chosen resolution was square images of
512x512 pixels as this is the image size Stable
Diffusion was trained on and it is close to the aver-
age image size of the original SNLI-VE dataset.’
The checkpoint chosen for this research is Realistic
Vision v51* which was finetuned for generating
photorealistic images.

4.2 Intrinsic evaluation

To assess intrinsic image quality we rely on two
measures. As an initial verification we compute
pairwise cosine similarity between the CLIP fea-
ture vectors of original and generated images and
assess the distribution of these values, expecting to
see a normal distribution.

Secondly, we use ranked similarity scores over
the full dataset to inspect whether, for a given origi-
nal image, the 5 generated images for it will appear
as highly similar or not. We specifically use re-
call@k and precision @k for evaluation:

In the ranking problem in this work, we take the
query to be an original image, and the ranked list
of documents to be the 100 most similar generated
images as determined by cosine similarity. The
relevance function is now binary, returning 1 for an
image that was indeed generated from one of the
captions of the original image, and O otherwise.

For precision@k, we divide the true positives by
the number of retrieved images.

4.3 Extrinsic evaluation

We test the validity of the generated images by us-
ing them as training data for a classifier to learn
the visual entailment classification problem. The

Zhttps://github.com/Stability-AI/
generative-models

3The mean width and height were 459 and 395 respectively,
and the standard deviations were 67 for width and 74 for height
with both having a maximal value of exactly 500.
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approach for this experiment is based on Song et al.
(2022) who proposed using CLIP for visual en-
tailment. Their method includes taking the CLIP
feature vector of both the premise image and the hy-
pothesis text, fusing these according to Equation 1
and training an MLP on this fused vector represen-
tation to output the correct entailment label.

fuse(vi, v2) = [v1, v2, vi+v2, V1 —v2, V1 V2] (1)

The input dimension for this perceptron is 2560
which is a direct result of the output size of the
fuse function. The fuse function concatenates the
feature vector of the image, the feature vector of
the hypothesis, the sum of these two vectors as well
as the difference between these vectors and finally
the product of these vectors. This results in a total
of five vectors that are concatenated and with each
vector having a size of 512 numbers, the result has
alength of 5 * 512 = 2560.

The resulting vector is used as an input for the
MLP which has one hidden layer of size 250. After
experimenting with different layer sizes, the size of
this hidden layer did not seem to affect the accuracy
of the classifier but had an impact on the compu-
tational performance. After this one hidden layer
the network only has one more layer which is the
output layer. This output layer has a size of 3 cor-
responding to the three possible labels: entailment,
neutral, contradiction.

We use this method to train classifiers on both
the the original images and the generated images
of the SNLI-VE dataset. These classifiers are then
tested on the original as well as on the generated
test sets, after which their performance is compared.
Note that absolute performance of the classifier is
not the primary goal. Rather, we are interested in
the relative performance of a classifier trained on
generated images compared to a classifier trained
on real images. We, however, aim for good perfor-
mance of both as this yields the most accurate data
to compare between these two.

S Experiments and Results

In this section we first report on the results for the
intrinsic evaluation (§5.1), after which we discuss
the downstream performance in the Visual Entail-
ment task (§5.2), and finally we discuss the results
of transferring the Visual Entailment model to the
SICK-VTE dataset (§5.3).
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A wedding party walks
out of a building.

The group of people are assembling
for a wedding.

A man and woman dressed for
a wedding function.

Figure 1: Three examples of generated images based on three of the captions in Figure 3.

5.1 Intrinsic evaluation

The starting point of our intrinsic comparison is
the cosine similarity distribution for images in the
development and test set of the SNLI-VE dataset
and its generated child images. Each original im-
age is compared to all the generated images and the
similarity scores are saved. We found that the simi-
larity values follow a normal distribution for both
the development and test set. The mean for both
sets is 0.465 with a standard deviation of ~ 0.085
This is also illustrated in Figure 4 in the appendix.

Ranked similarity After assessing the similarity
distribution between original and generated images,
we report on the recall@k and precision @k curves.
Initially, we computed average recall @k and preci-
sion@k values for k¥ = 100, which reveals that on
average only 1.6 of the 100 most similar synthetic
images to the real images were based actually gen-
erated based on one of the premises accompanying
that real image. These results stem from the fact
that finding the 100 most similar out of ~160k gen-
erated images will likely not result in finding all of
the 5 images that are relevant. This is illustrated
in Figure 2 where an image is shown together with
the most cosine similar generated image which is
not one of its child images. These two images
could be considered rather similar by a human. It
is likely that there are more images in the collec-
tion that are similar than only the child images,
making the recall@k measure an underestimation
of the real quality of the generated images. The
recall@k and precision@k curves for this setting
are in Figures 5a and 5b in the appendix.

To get a fairer picture of the similarity evaluation,
we recalculate recall@k and precision@k curves
for a sampled version of the data which is needed as
the train set is large very large compared to the dev
and test set, which are only 1000 original images

Train set Original Generated
Original 70.3%/0.703  71.1%/0.710
Generated | 68.9% /0.686 73.2% /0.732

Table 1: Accuracies/F1 scores of both models on both
test sets of SNLI-VE.

each. We randomly sample 1000 examples from
the train set of SNLI-VE, and consequently cal-
culate recall@k and precision @k values for train,
development, and test sets separately, each time
considering 1000 original images and its ~5000
generated child images. The resulting plots for the
recall@k and precision@k of the samples are in
Figure 6b and Figure 6a in the appendix. We find
that the average success rate is between 3.5 and
4 out of the five possible relevant images, indicat-
ing that most of the relevant real images are found
within the first 100 most similar generated images.

For completeness, we include the variance of the
recall and precision curves of the samples in Fig-
ure 7 in the appendix where one standard deviation
above and below each curve is marked.

5.2 Extrinsic Evaluation: Classification

We train both a model on the dataset of original
images, and a model on the dataset of generated
images, using the same train/dev/test split as sug-
gested for the SNLI-VE dataset. We trained the
model for 100 epochs and selecting the epoch for
which the model performs highest on the develop-
ment set, which was saved for evaluating on the
test set. The accuracy and loss on the training set
and dev set are shown in the appendix in Figure 8a
and 8b and Figure 9a and 9b respectively.

We report accuracies and F1 scores in Table 1.
We observe the best overall performance when us-
ing the model trained on generated data evaluated
on the generated data as well. This suggests that



(a) Original

(b) Generated

Figure 2: An example of an image and a generated image which looks similar but is not considered relevant as the
generated image is not a child of the original image in this evaluation. The original image (a) had 5 captions in
the dataset written by 5 different workers. Image (b) was generated for the caption “A group of young men have
finished their drinks while sitting at a table in a restaurant .”

the generated images and their classification has
less variability compared to the original data. We
also see that the model trained on original images
performs better on the generated test set than it
does on the original test set. This could suggest
that the generated test set is “easier” to classify.
Lastly, and most importantly, we do see that the
model trained on generated data and tested on orig-
inal data has a somewhat lower performance in this
experiment, but the difference is small. It suggests
that synthetic training data results in slightly worse
performance in real world tasks.

5.3 Cross-data generalizability

The final part of the experiments evaluate the per-
formance of the trained models when they are
tested on another dataset, in this case the SICK-
VTE dataset. As discussed in Section 3, SICK-
VTE and its synthetic counterpart do not contain
any neutral examples. To train visual entailment
models, having neutral examples would be essen-
tial however for the purpose of testing the general-
izability pretrained models, a dataset with neutral
examples is preferred.

The experimental setup is similar to that of the
classification experiment in Section 5.2, except that
we now reuse the trained models from the prior
experiment as we assess transfer capabilities. Both
of the trained models were tested on the original
SICK-VTE dataset and, for completeness, also on
the generated version of SICK-VTE. Similar to
the previous experiment, we report both accuracy
and F1 scores in Table 2. Note that, in contrast
to the results on the SNLI-VE dataset, accuracy
and F1 scores diverge, due to label imbalance in
SICK-VTE.

Train set Original Generated
Original 50.7%/0.400 51.4%/0.391
Generated | 47.2%/0.384 47.6% /0.384

Table 2: Accuracies/F1 scores of both models on the
SICK-VTE datasets.

We find that performance is relatively poor,
given a majority baseline of 0.6657 for a model
only predicting Entailment. This result is in line
with the findings of Talman and Chatzikyriakidis
(2019), who found similar issues when transfering
models trained on the SNLI dataset to the SICK
dataset. Secondly, we can conclude that the model
trained on generated data performs slightly worse
compared to the model trained on original data.
This is in line with the findings in the previous
experiment (§5.2).

6 Conclusion

In this paper we introduced a synthetic VE dataset
Synthetic-NLI-VE. The dataset proved to have sim-
ilar utility compared to the dataset it was based
on while being far less costly to create. This also
proves the viability of using generative Al to create
datasets for the VE task, whereby we pave the way
for future research into using synthetic data for VE
dataset creation. As future work we propose chang-
ing the single set of parameters for the generation
model to a variety of different values. Secondly,
generating more than one image per caption could
result in better training data compared to the one
image per caption dataset we generated. Lastly,
evaluating different classification algorithms could
further strengthen the findings.



Limitations

Our experiments are limited evaluation for the
CLIP model, and the findings might be different
for other visual entailment models.

We investigated cross-data generalizability in
synthetic VTE datasets. One limitation of our ex-
periments is that both SNLI-VE and SICK-VTE
are created based on Flickr30K, which makes
them relatively more similar to each other than
datasets based on other sources, such as NLVR and
NLVR2.> We leave this cross-domain evaluation
for future work.
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Additional figures are on the following pages.
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* A bearded man, and a girl in a red dress are getting married.
* A wedding party walks out of a building.
* The group of people are assembling for a wedding.

* A man and woman dressed for a wedding function.

¢ A woman holds a man’s arm at a formal event.

Figure 3: One of the ~30k photos and its 5 accompanying captions from the SNLI dataset.

1eg Similarity distribution for all data

2.5

1.0

0.5

0.0

2.04

Occurences
[
wn

[y
)

0.5 1

0.0

T
0.0

Figure 4: Cosine similarity values for the dataset, showing the expected normal distribution.

Recall at k

Similarity

Precision

k

(a)

Figure 5: Recall (a) and precision (b) curves, calculated as averaged over the full dataset of images.

0.12

0.11 4

0.10 4

0.09

0.07

0.06

mm all data

T
0.8

T
10

Precision at k




Training accuracy

Recall at k Precsion at k

4.0 4
— devset — dev set
354 train set 0.50 —— train set
| — testset — testset
3.0 0.45
2.5 4
0.40
= 5
T 2.0 (4]
g £ 035
15
104 0.30 |
0.5 4 0.25
0.0 4
T T T T T T 0.20 4 T T T T T T T T T
0 20 0 60 80 100 1 2 3 4 5 6 7 8 9
k k
(@) (b)
Figure 6: Precision and recall curves where the train set is sampled in samples of 1000 images.
Recall at k Precision at k
4.0
3.5 0ad
3.0
2.5 0.3
= 5
g 2.0 E
15 4 0.2 4
1.0
0.1
0.5
0.0 4
0 20 a0 60 80 100 1 2 3 4 5 & 1 8 9
k k
(a) (b)
Figure 7: Average precision and recall curves with one standard deviation.
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Figure 8: Performance on the training set during training.
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Figure 9: Performance on the development set after each epoch.
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