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Abstract

In this paper we explore a hybrid approach
to challenging Natural Language Inference
datasets that combines Large Language Models
(LLMs) and logical theorem proving. We re-
port on an experiment which combines an LLM
meta-prompting strategy, eliciting logical repre-
sentations, and Prover9, a first-order logic theo-
rem prover. In addition, we experiment with the
inclusion of (logical) world knowledge. Our
findings suggest that (i) requesting first-order
logic formalizations of sentences usually im-
proves model performance, even when those
formulas are not explicitly used, (ii) determin-
ing the inference relation from the generated
formulas nevertheless performs worse, and (iii)
priming the model to generate relative world
knowledge is sometimes effective. We argue
that these results explicate the weaknesses of
both approaches. As such, we consider this
study a source of inspiration for future work in
the field of neuro-symbolic reasoning.

1 Introduction

Natural Language Inference (NLI) is a core task
in Natural Language Processing (NLP) and is of-
ten presented as a proxy measure of the reasoning
capabilities of NLP models. Briefly, a model is
presented with a premise sentence and a hypothesis
sentence and must decide whether the hypothesis
is entailed by the premise (E), contradicts it (C), or
is neutral with respect to it (N).

Although many NLI datasets have been devel-
oped, starting with the SICK dataset of Marelli
et al. (2014) and the SNLI dataset of Bowman et al.
(2015), more attention has recently been put on us-
ing NLI to measure specific linguistic phenomena.
The MED dataset, for example, tests for monotonic
reasoning (Yanaka et al., 2019a; Richardson et al.,
2020). The CURRICULUM benchmark (Chen and
Gao, 2022) is a notable aggregation of NLU tasks
(including things like question answering) that have

been uniformly formulated as NLI tasks.!

One often heard criticism of NLI as a task is
that datasets often contain biases and annotation
artifacts, and that models trained on them exhibit
poor generalization capabilities. It is shown by
Yanaka et al. (2019a) for English, and corroborated
by Wijnholds (2023) for Dutch, that models have
a tendency to overtune, and that they fail to prop-
erly address negation. That models seem to exploit
relatively shallow heuristics such as lexical over-
lap and sentence length, is confirmed in prior work
(Naik et al., 2018; McCoy et al., 2019), and an ef-
fort to repair an existing dataset is done by Kalouli
et al. (2023). Finally, NLI models don’t necessarily
transfer gracefully to other NLI datasets (Talman
and Chatzikyriakidis, 2019; Bhargava et al., 2021).

Many of the mentioned datasets and results were
achieved with encoder-only models like BERT,
which can narrowly generalize through finetuning;
gradually, this has been replaced by decoder-only
Large Language Models (GPT-3 onward), allow-
ing for the NLI task to be stated as a text-to-text
problem. Though this avoids some of the above-
mentioned pitfalls, the results of McKenna et al.
(2023) show that generative language models still
suffer from bias and additionally are a source of
hallucinations, an issue that is persistent for models
that are effectively next-word predictors.

In order to control the output of model prompt-
ing, one method is to specifically constrain model
output as a part of the decoding scheme; addition-
ally this has the benefit of guaranteeing syntactic
correctness over prompting results, leading to more

'A historical note: Prior to the advent of neural (language)
models, Recognizing Textual Entailment (RTE) was the more
common terminology for inference datasets. These datasets,
such as the FraCaS suite (Cooper et al., 1996), typically
framed the task as a two-way classification (entailment vs.
non-entailment) with canonical examples for different linguis-
tic phenomena, but there is no hard distinction between NLI
and RTE. In the continuation, we use the NLI/RTE termi-

nology primarily to distinguish between three- and two-label
datasets.



effective prompting strategies. Constrained decod-
ing approaches can work either through vocabu-
lary filters (e.g. only ‘E’, ‘N’ and ‘C’ are valid
prompt continuations), or through more sophisti-
cated strategies like generating vocabulary filters
determined by finite state automata (aka regular
expressions) (Willard and Louf, 2023) or context-
free grammars (Beurer-Kellner et al., 2024). While
these approaches provide some control over model
output, they are nevertheless limited to syntactic
correctness, meaning they will not fully avoid hal-
lucinations. In this work we use vocabulary filters.

Mixing LLM prompting with logic-based ap-
proaches is an emerging field with a number of
precedents in NLP. A recent example is the study of
Pan et al. (2023), which combines LLM prompting
with theorem proving for logical reasoning, with
the downside of returning incorrect representations
back to the LLM to repeat the prompting procedure.
Another work suggests constrained decoding for
a variety of (structured) NLP tasks (Geng et al.,
2023), but unfortunately doesn’t provide a concrete
implementation for most examples.

While there is some recent work attempting to
bring logical representations in the loop in order
to formalize the (chain-of-thought) prompting pro-
cess (Ranaldi et al., 2025), logic-based approaches
to NLI are rare, and were mostly performed in
the era before LLMs, typically in a multimodal
setting or following a pipeline where sentences
are first encoded using a syntactic and semantic
parser, after which a classification is made (Abzian-
idze, 2020; Abzianidze and Kogkalidis, 2021; Chen
et al., 2021; Suzuki et al., 2019; Tomihari and
Yanaka, 2023).

In this work we set out to provide a pilot study
mixing the above approaches to tackle complex
NLI test sets with a variety of strategies, including
prompting LLMs for first-order logical representa-
tions. 2

2 Logic-Based NLI with an LLM

Concretely, our pipeline works as follows: We
prompt a model to generate logical representations
for a given premise—hypothesis pair, after which we
re-prompt the model to generate a (constrained) an-
swer on the (non-)entailment between the premise
and hypothesis. Whenever relevant, we feed the

2The code is available online: https://github.com/
GU-CLASP/logic-based-NLI-with-LLMs/

generated formulas to a theorem prover> to assess
which path is more performant. As a baseline we
consider a label only strategy where the model is
not prompted for any logical representations but
must directly generate the NLI label.

Datasets We evaluate our approach on six dif-
ferent sections of the CURRICULUM benchmark
(Chen and Gao, 2022). The comparative, con-
ditional, negation, and quantifiers datasets are
drawn from Richardson et al. (2020) and follow
the NLI format. The lexical entailment section
has test set items drawn from Schmitt and Schiitze
(2021) and Glockner et al. (2018), and the mono-
tonicity section has test set items drawn from
Yanaka et al. (2019b) and Richardson et al. (2020).
These later two sections use the RTE format.

Prompt setup Our prompting approach is an ex-
ample of meta-prompting, i.e., the outcome of the
first prompt is included in a second prompt. We
distinguish three alternatives: Firstly, the label only
prompt asks the model to directly generate an NLI
label, constrained to the three possibilities (E, N, C).
Second, the formula prompt asks the model to first
generate formulas in first-order logic (in a model-
friendly format) for the premise and hypothesis and
then is asked to generate a label, hence incorporat-
ing both textual and logical representations of the
NLI instance. Finally, there is the formulas and
world knowledge setting where the intermediate
generation prompt provides formulas and relevant
world knowledge in logical form.

Model choice Given that we strive for full trans-
parency in our experiments, we set four desiderata
(in order of importance) and choose such that the
model (1) has freely available architecture code; (2)
has fully specified training data; (3) has a reason-
able performance baseline; and (4) is as small as
possible modulo the preceding points. Given these
constraints, we work with Zephyr*, which strikes a
balance between performance and model size, and
is fully transparent in terms of architecture code
and training data.

3 Results

Table 1 displays the overall results for several NLI
datasets. Additionally, results on the two RTE tasks
are given in Table 2.

3Prover9, (McCune, 2005-2010)
4https://huggingface.co/HuggingFaceH4/
zephyr-7b-beta
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Label E C N
DA P9 DA P9 DA P9
Dataset Prompt
label-only 77.6 - 73.7 - 6.8 -
comparative forms 71.4 8.2 949 0.0 17.5  99.0
forms+wk 98.0 100.0 56.6 0.0 9.7 0.0
label-only 48.4 - 0.0 - 50.9 -
conditional  forms 74.7  59.8 54.7 500 43.6 100.0
forms+wk 50.5 370 51.6 484 0.9 100.0
label-only 0.0 - 15.6 - 36.5 -
negation forms 0.0 0.0 60.0 98.9 90.4 100.0
forms+wk 2.2 0.0 62.2 98.8 9.6 98.2
label-only 70.0 - 35 - 96.9 -
quantifier forms 722 59.8 825 272 29.2  100.0
forms+wk 989 64.0 1.8 235 5.2 100.0

Table 1: Mean accuracy (recall) by label for Zephyr on NLI datasets, using different prompt schemes. Where
relevant, accuracy is shown for both the LLM’s direct answer (DA) and the label inferred from the generated
formulas and the Prover9 theorem prover (P9). For each dataset and label, the best DA result is bolded and the P9
result in underlined when it exceeds the DA result. The P9 column excludes items that resulted in a Prover9 error

(see Table 3 for the unfiltered results).

Label E N/C

DA P9 DA P9
Dataset Prompt

label-only 6.7 - 94.6 -
lexical forms 250 1.5 97.3 100.0
forms+wk 250 653 96.6 34.8
label-only 58.3 - 34.8 -
monotonicity forms 46.8 16.7 47.8 90.9
forms+wk 47.5 50.0 472 54.6

Table 2: As Table 1 but for the RTE datasets. See Table 4 for the unfiltered Prover9 results.



In the mood for logic We firstly note that the
direct answer performance is generally higher in
the setup in which the model is asked to gener-
ate a logic formula (formulas) and subsequentially
generate the NLI label. In other words: When the
model is self-primed to think in terms of logic, it
appears to label in terms of logic, generally improv-
ing performance. A notable exception to this rule
is the case of neutral-labeled items in the quanti-
fier dataset, where the label-only setup performed
significantly better (96.9%) than either of the two
prompt schemes involving formulas (29.9% for for-
mulas and 5.2 for formulas + world knowledge).
For this dataset, it seems that generating formulas
causes the model to predict a logical relationship
between sentences where in fact none exists.

Priming the model to generate formulas for rel-
evant world knowledge helps in some cases, but
the effect is much more mixed. For example, it is
beneficial for entailments in the comparative and
quantifier datasets, but detrimental for the other
two labels in the same datasets. It is possible that
in these cases, asking the model to generate world
knowledge biases it more towards finding an entail-
ment in general.

Theorem proving We secondly note that the la-
bels inferred from the generated formulas are not
always an improvement over the model’s direct an-
swer. For the neutral (or non-entailment) columns,
we see that the Prover9-inferred label accuracy
is typically higher than the direct answer (often
much higher), but recall that we infer a neutral la-
bel whenever Prover9 cannot find a proof of the
hypothesis (or its negation) from the premise and
any relevant world-knowledge formulas, so these
apparently good results for neutral items may just
be evidence that the generated formulas don’t fully
capture the logical relationships that would be re-
quired to draw an inference if there were one. This
can happen when the model produces formulas that
are unrelated to each other for the wrong reasons
(e.g., inconsistently translated predicates).

There are, however, several other cases where
the inferred label accuracy shows a notable
performance improvement over the direct an-
swer. Prover9 accuracy is significantly better for
contradiction-labeled items in the negation dataset,
and it is somewhat better for entailments of the
lexical dataset in the prompt scheme that includes
world-knowledge formulas.

Overall, while there are some cases in which the

label inferred from the generated formulas outper-
forms the direct-answer label, there are even more
cases where generating the formulas improves the
direct answer but the formulas themselves cannot
be used to infer the correct label. This suggests that
the utility of prompting the model for formulas is
mostly in priming it to attend to the logical rela-
tionships between the natural language sentences.
Upon closer inspection, we suspect that the logi-
cal representations for the premise and hypothesis
are often not linked together logically, pushing the
theorem prover towards Neutral.

4 Conclusion

This work investigates the use of constrained de-
coding and LLM prompting for Natural Language
Inference. We specifically test three setups: (1) An
LLM is prompted to solve the task directly; (2) the
LLM first is prompted to generate logic formulas
and subsequently re-prompted to use those formu-
las to provide an answer; and (3) the model is also
prompted to generate formulas capturing any rele-
vant lexical knowledge before answering. Gener-
ated formulas are also fed to a theorem prover. We
observe that while the theorem prover may help in
cases of entailment and non-entailment, the overall
performance is highest for the two-step prompting
approach of letting the model decide based on its
own generated formulas.

Limitations We consider this work a pilot study
investigating the applicability of constrained decod-
ing to support NLI systems based on LLM prompt-
ing. This leads to a number of lessons of this work:
(1) Priming an LLM by asking for logical repre-
sentations increases performance on challenging
NLI test sets; (2) Generating logical representa-
tions with only prompt examples as gold standard
is too primitive to use in combination with theorem
proving; (3) Adding world knowledge can mitigate
the gold standard issue; (4) With the adequate com-
bination of representation format, language model,
and prompt setup one may push the limits of NLI;
(5) Constrained decoding can play a role in control-
ling LLM output and overall performance.

Future Work The findings in this paper warrant
a lot of future work; for example, the lack of gold
standard data in the test sets we used makes it dif-
ficult for the model to tune its generated logical
representations, so ideally a gold standard is re-
quired.



Another underrepresented concept is a change in
representation format, where predicate logic formu-
las could be encoded in formats more represented
in LLM training data, such as Python code, or Z3
statements. Natural logic may also be a promis-
ing output format for LLMs due to its closeness to
natural language (Lakoff, 1970).
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A LLM prompts

Figures 1, 2, and 3 show the three different
prompt templates used to elicit NLI classifica-
tions from the LLM. Only the ITEM_PREMISE
and ITEM_HYPOTHESIS vary by item, whereas the
DATASET_LABELS and EXAMPLE_* fields vary by
dataset. The LM_* fields are filled in by the LLM.

The specific few-shot examples used for each
dataset can be found in Figures 4-9.
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Given a pair of sentences, the task is to determine whether Sentence A entails Sentence B by labeling
<~ the pair with <DATASET_LABELS>.

Sentence A: <EXAMPLE_1_PREMISE>

Sentence B: <EXAMPLE_1_HYPOTHESIS>

H#iHt

The relation between Sentence A and Sentence B is: <EXAMPLE_1_LABEL>
~ REPEATED FOR EXAMPLES 2 and 3 ~

Sentence A: <ITEM_PREMISE>

Sentence B: <ITEM_HYPOTHESIS>

H#iHt

The relation between Sentence A and Sentence B is: <LM_DIRECT_ANSWER>

Figure 1: The prompt asking the model for a direct answer. <DATASET_LABELS> is adaptable, depending on whether
the task at hand uses binary (RTE) or ternary (NLI) classification; <LM_DIRECT_ANSWER> is constrained by the
relevant label set; the three few-shot examples are specific to the dataset the item comes from (see Figures 4-9).

Given a pair of sentences, the task is to parse each sentence into first-order logic formulas and
< then determine whether Sentence A entails Sentence B by labeling the pair with
<— <DATASET_LABELS>.

The grammar of first-order logic formulas is defined as follows:
1) logical conjunction of exprl and expr2: exprl & expr2

2) logical disjunction of exprl and expr2: exprl | expr2

3) logical negation of expril: -expri

5) expr1 implies expr2: exprl -> expr2

6) expr1 if and only if expr2: exprl <-> expr2

7) logical universal quantification over exprl: forall x. exprl
8) logical existential quantification over exprl: exists x. exprl

Sentence A: <EXAMPLE_1_PREMISE>
Sentence B: <EXAMPLE_1_HYPOTHESIS>

#it#

Formula A: <EXAMPLE_1_PREMISE> ::: <EXAMPLE_1_PREMISE_FORMULA>
Formula B: <EXAMPLE_1_PREMISE> ::: <EXAMPLE_1_HYPOTHESIS_FORMULA>
#iH#

The relation between Sentence A and Sentence B is: <EXAMPLE_1_LABEL>
~ REPEATED FOR EXAMPLES 2 and 3 ~

Sentence A: <ITEM_PREMISE>
Sentence B: <ITEM_HYPOTHESIS>

#iH#

Formula A: <ITEM_PREMISE> ::: <LM_PREMISE_FORMULA>
Formula B: <ITEM_HYPOTHESIS> ::: <LM_HYPOTHESIS_FORMULA>
#it#

The relation between Sentence A and Sentence B is: <LM_DIRECT_ANSWER>

Figure 2: The prompt asking the model for first-order logic formulas for the premise and hypothesis, as well as a
direct answer. <DATASET_LABELS> is adaptable, depending on whether the task at hand uses binary (RTE) or ternary
(NLI) classification; <LM_DIRECT_ANSWER> is constrained by the relevant label set; the three few-shot examples are
specific to the dataset the item comes from (see Figures 4-9).




Given a pair of sentences, the task is to parse each sentence into first-order logic formulas, then
< write first-order logic formulas that capture any relevant lexical knowledge, and finally
— determine whether Sentence A entails Sentence B by labeling the pair with <DATASET_LABELS>.

1) logical conjunction of exprl and expr2: exprl & expr2

2) logical disjunction of exprl and expr2: exprl | expr2

3) logical negation of exprl: -exprl

5) expr1 implies expr2: exprl -> expr2

6) expr1 if and only if expr2: exprl <-> expr2

7) logical universal quantification over exprl: forall x. exprl

8) logical existential quantification over exprl: exists x. exprl

Sentence A: <EXAMPLE_1_PREMISE>
Sentence B: <EXAMPLE_1_HYPOTHESIS>

#it#

Formula A: <EXAMPLE_1_PREMISE> ::: <EXAMPLE_1_PREMISE_FORMULA>
Formula B: <EXAMPLE_1_PREMISE> ::: <EXAMPLE_1_HYPOTHESIS_FORMULA>
#iH#

Lexical knowledge:
<EXAMPLE_1_WORLD_KNOWLEDGE_FORMULA_1>

<EXAMPLE_1_WORLD_KNOWLEDGE _FORMULA_N>

##H#

The relation between Sentence A and Sentence B is: <EXAMPLE_1_LABEL>
~ REPEATED FOR EXAMPLES 2 and 3 ~

Sentence A: <ITEM_PREMISE>
Sentence B: <ITEM_HYPOTHESIS>

#it#

Formula A: <ITEM_PREMISE> ::: <LM_PREMISE_FORMULA>
Formula B: <ITEM_HYPOTHESIS> ::: <LM_HYPOTHESIS_FORMULA>
#it#

Lexical knowledge:

<LM_WORLD_KNOWLEDGE_FORMULAS>

#iH#

The relation between Sentence A and Sentence B is: <LM_DIRECT_ANSWER>

Figure 3: The prompt asking the model for first-order logic formulas for the premise and hypothesis, as
well as a direct answer. <DATASET_LABELS> is adaptable, depending on whether the task at hand uses bi-
nary (RTE) or ternary (NLI) classification; <LM_DIRECT_ANSWER> is constrained by the relevant label set;
<LM_WORLD_KNOWLEDGE _FORMULAS> is constrained to be a newline-separated list of strings; the three few-shot
examples are specific to the dataset the item comes from (see Figures 4-9).




EXAMPLE_1 = { # example id 4598
'PREMISE' = "The purple alien drank soda."
'"HYPOTHESIS' = "The purple alien drank coke."

'"PREMISE_FORMULA' = "exists x. exists y. Purple(x) & Alien(x) & Soda(y) & Drank(x, y)"
"HYPOTHESIS_FORMULA' = "exists x. exists y. Purple(x) & Alien(x) & Coke(y) & Drank(x, y)"

'WORLD_KNOWLEDGE_FORMULAS' = [
forall x. (Coke(x) -> Soda(x)),

]

}

EXAMPLE_2 = { # example id 5075
'"PREMISE' = "Nobody danced.”
"HYPOTHESIS' = "Nobody moved."

'"PREMISE_FORMULA' = "forall x. -Dance(x)"”
'"HYPOTHESIS_FORMULA' = "forall x. -Move(x)"
'"WORLD_KNOWLEDGE_FORMULAS' = [

forall x. (Dance(x) -> Move(x)),

]
}
EXAMPLE_3 = { # example id 54
'"PREMISE' = "All animals like to scratch their ears.”
"HYPOTHESIS' = "All dogs like to scratch their ears.”
'"PREMISE_FORMULA' = "forall x. (Animal(x) -> LikesToScratchEars(x,

'"HYPOTHESIS_FORMULA' = "forall x. (Dog(x) -> LikesToScratchEars(x,
'WORLD_KNOWLEDGE _FORMULAS' = [

forall x. (Dog(x) -> Animal(x)),
]

X)) n
x))"

Figure 4: Few-shot examples for items from the monotonicity dataset. CURRICULUM item ids: 4598 5075 54




EXAMPLE_1 = { # example id 2675

'"PREMISE' = "Ruben is as tall as Jack , Jack is as tall as Francis , Francis is as tall as Gordon
— , Gordon is as tall as Bruce , Bruce is as tall as Alan , Alan is as tall as Danny ,
< Danny is taller than Allen”

'"HYPOTHESIS' = "Keith is taller than Alan”

'PREMISE_FORMULA' = "AsTallAs(ruben, jack) & AsTallAs(jack, francis) & AsTallAs(francis, gordon)
— & AsTallAs(gordon, bruce) & AsTallAs(bruce, alan) & AsTallAs(alan, danny) & TallerThan(
< Danny, alan)"

"HYPOTHESIS_FORMULA' = "TallerThan(keith, alan)"”

'WORLD_KNOWLEDGE_FORMULAS' = [

forall x. forall y. TallerThan(x, y) -> -AsTallAs(y, x),
forall x. forall y. forall z. (TallerThan(x, y) & TallerThan(y, z)) -> TallerThan(x, z),

]
}
EXAMPLE_2 = { # example id 648
'PREMISE' = "Russell is taller than Oscar, Terrance, Lawrence, Dan, Felix, Todd, Alex, Jose and
< Harry , Russell is as tall as Clifton”
'"HYPOTHESIS' = "Felix is taller than Clifton”
'"PREMISE_FORMULA' = "TallerThan(russell, oscar) & TallerThan(russell, terrance) & TallerThan(

< russell, dan) & TallerThan(russell, felix) & TallerThan(russell, todd) & TallerThan(
— russell, alex) & TallerThan(russell, jose) & TallerThan(russell, harry) & AsTallAs(
< russell, clifton)”

"HYPOTHESIS_FORMULA' = "TallerThan(felix, clifton)”

'WORLD_KNOWLEDGE_FORMULAS' = [
forall x. forall y. forall z. (AsTallAs(x, y) & TallerThan(x, z) -> TallerThan(y, z)),
forall x. forall y. (TallerThan(x, y) -> -TallerThan(y, x)),

b

EXAMPLE_3 = { # example id 1421

'PREMISE' = "Jesse is as tall as Paul , Paul is as tall as Terry , Terry is as tall as Sidney ,
— Sidney is as tall as Luis , Luis is as tall as Andy , Andy is as tall as Freddie ,
— Freddie is as tall as Adrian , Adrian is taller than James"”

'"HYPOTHESIS' = "Luis is taller than James”

'PREMISE_FORMULA' = "AsTallAs(jesse, paul) & AsTallAs(paul, terry) & AsTallAs(terry, sidney) &
— AsTallAs(sidney, luis) & AsTallAs(luis, andy) & AsTallAs(andy, freddie) & AsTallAs(
— freddie, adrian) & TallerThan(adrian, james)"

"HYPOTHESIS_FORMULA' = "TallerThan(luis, james)"

'"WORLD_KNOWLEDGE_FORMULAS' = [
forall x. forall y. forall z. (AsTallAs(x, y) & TallerThan(y, z) -> TallerThan(x, z)),
forall x. forall y. forall z. (AsTallAs(x, y) & AsTallAs(y, z) -> AsTallAs(x, z)),

Figure 5: Few-shot examples for items from the comparative dataset. CURRICULUM item ids: 2675 648 1421




EXAMPLE_1 = { # example id 2200

'PREMISE' = "Tony has not visited Beaverton, Johnny has not visited Long Beach, Ken has visited
— Kingston and if Tony has not visited Beaverton then Fred has not visited Danville”
'"HYPOTHESIS' = "Fred has not visited Danville”
'PREMISE_FORMULA' = "-Visited(tony, beaverton) & -Visited(johnny, long_beach) & Visited(ken,
< kingston) & (-Visited(tony, beaverton) -> -Visited(fred, danville))"
'"HYPOTHESIS_FORMULA' = "-Visited(fred, danville)"
'"WORLD_KNOWLEDGE _FORMULAS' = [
]
}
EXAMPLE_2 = { # example id 2699
'"PREMISE' = "Felix has not visited Pampa, William has not visited Bessemer, Eddie has visited
< Grants Pass and if Felix has visited Pampa then Danny has visited Belmont”
'"HYPOTHESIS' = "Danny has visited Belmont”
'PREMISE_FORMULA' = "-Visited(felix, pampa) & -Visited(william, bessemer) & Visited(eddie,
— grants_pass) & (Visited(felix, pampa) -> Visited(danny, belmont))"
"HYPOTHESIS_FORMULA' = "Visited(danny, belmont)"
'"WORLD_KNOWLEDGE_FORMULAS' = [
]
}
EXAMPLE_3 = { # example id 1384
'"PREMISE' = "Don has not visited Norwich, Alberto has visited Nevada, Wallace has visited Wyoming
< and if Alberto has visited Nevada then Sam has visited Arcadia”
'"HYPOTHESIS' = "Sam has not visited Arcadia”
'PREMISE_FORMULA' = "-Visited(don, norwhich) & Visited(alberto, nevada) & Visited(wallace,
— wyoming) & (Visited(alberto, nevada) -> Visited(sam, arcadia))"”
"HYPOTHESIS_FORMULA' = "-Visited(sam, arcadia)”
'WORLD_KNOWLEDGE_FORMULAS' = [
]

Figure 6: Few-shot examples for items from the conditional dataset. CURRICULUM item ids: 2200 2699 1384

EXAMPLE_1 = { # example id 1933

'PREMISE' = "A stricken butterfly has Wings."

'"HYPOTHESIS' = "A stricken butterfly wavers on Wings.”

'"PREMISE_FORMULA' = "exists x. exists y.(Stricken(x) & Butterfly(x) & Wings(y) & Has(x, y))"

'"HYPOTHESIS_FORMULA' = "exists x. exists y.(Stricken(x) & Butterfly(x) & Wings(y) & WaversOn(x, y
= )"

'WORLD_KNOWLEDGE_FORMULAS' = [
forall x. forall y. (Has(x, y) -> WaversOn(x, y)),

]

}

EXAMPLE_2 = { # example id 3662
'"PREMISE' = "Sadat beat Jimmy Carter.”
'"HYPOTHESIS' = "Jimmy Carter secluded Sadat.”
'PREMISE_FORMULA' = "Beat(sadat, jimmy_carter)”
"HYPOTHESIS_FORMULA' = "Secluded(jimmy_carter, sadat)”

'WORLD_KNOWLEDGE_FORMULAS' = [
-(forall x. forall y. (Beat(x, y) -> Secluded(y, x))),
]

Figure 7: Few-shot examples for items from the lexical dataset. CURRICULUM item ids: 1933 3662




EXAMPLE_1 = { # example id 1874
'"PREMISE' = "Harry has only visited Bhutan, Curtis has only visited Ecuador, Roland has only
< visited Philippines, Tom has only visited Uganda, Darren has only visited Jordan, Byron
< has only visited Cameroon, Willie has only visited Vanuatu, Brett has only visited North

— Korea"
'"HYPOTHESIS' = "Curtis didn't visit Belize”
'"PREMISE_FORMULA' = "Visit(harry, bhutan) & forall x. (Visit(harry, x) -> x = bhutan) & Visit(

< curtis, ecuador) & forall x. (Visit(curtis, x) -> x = ecuador) & Visit(roland,

— philippines) & forall x. (Visit(roland, x) -> x = philippines) & Visit(tom, uganda) &
— forall x. (Visit(tom, x) -> x = uganda) & Visit(darren, jordan) & forall x. (Visit(darren,
— Xx) -> x = jordan) & Visit(byron, cameroon) & forall x. (Visit(byron, x) -> x = cameroon)
— & Visit(willie, vanuatu) & forall x. (Visit(willie, x) -> x = vanuatu) & Visit(brett,
— north_korea) & forall x. (Visit(brett, x) -> x = north_korea)"
"HYPOTHESIS_FORMULA' = "-Visit(curtis, belize)”
'WORLD_KNOWLEDGE_FORMULAS' = [
belize != ecuador,
]
}
EXAMPLE_2 = { # example id 2526
'"PREMISE' = "Howard has only visited Croatia, Karl has only visited Kosovo”
'"HYPOTHESIS' = "Ross didn't visit Croatia”
'PREMISE_FORMULA' = "Visit(howard, croatia) & forall x. (Visit(howard, x) -> x = croatia) & Visit
— (karl, kosovo) & forall x. (Visit(karl, x) -> x = kosovo)"”
"HYPOTHESIS_FORMULA' = "-Visit(ross, croatia)"”
'WORLD_KNOWLEDGE_FORMULAS' = [
howard != ross,
]

}

EXAMPLE_3 = { # example id 581

'PREMISE' = "Thomas has only visited Romania, Adrian has only visited Tuvalu, Everett has only
— visited Djibouti, Marc has only visited Dominica, Don has only visited China, Nicholas
< has only visited Turkmenistan, Lonnie has only visited Iraq, Theodore has only visited
— North Korea, Andrew has only visited Nepal, Ken has only visited Saint Lucia, Terrence
< has only visited Liberia”

'"HYPOTHESIS' = "Ken didn't visit Saint Lucia”

'"PREMISE_FORMULA' = "Visit(thomas, romania) & forall x. (Visit(thomas, x) -> x = romania) & Visit
< (adrian, tuvalu) & forall x. (Visit(adrian, x) -> x = tuvalu) & Visit(everett, djibouti)
—» & forall x. (Visit(everett, x) -> x = djibouti) & Visit(marc, dominica) & forall x. (
— Visit(marc, x) -> x = dominica) & Visit(don, china) & forall x. (Visit(don, x) -> x =
< china) & Visit(nicholas, turkmenistan) & forall x. (Visit(nicholas, x) -> x =
< turkmenistan) & Visit(lonnie, iraq) & forall x. (Visit(lonnie, x) -> x = iraq) & Visit(
—» theodore, korea) & forall x. (Visit(theodore, x) -> x = korea) & Visit(andrew, nepal) &
— forall x. (Visit(andrew, x) -> x = nepal) & Visit(ken, saint_lucia) & forall x. (Visit(
<~ ken, x) -> x = saint_lucia) & Visit(terrence, liberia) & forall x. (Visit(terrence, x) ->
— x = liberia)”

'"HYPOTHESIS_FORMULA' = "-Visit(ken, saint_lucia)"”

'WORLD_KNOWLEDGE_FORMULAS' = [

]

Figure 8: Few-shot examples for items from the negation dataset. CURRICULUM item ids: 1874 2526 581




EXAMPLE_1 = { # example id 2857
'PREMISE' = "Everyone has visited Lesotho, Botswana, Cambodia, Kyrgyzstan, Lithuania, Tonga,
< Suriname, Costa Rica, Thailand, Bangladesh, New Zealand, Nigeria, Pakistan, Palau, Libya,
<> Bosnia & Herzegovinia, United Arab Emirates, Chad, Solomon Islands and Ireland”
'"HYPOTHESIS' = "That person there did visit Libya”
'"PREMISE_FORMULA' = "forall x. Visit(x,lesotho) & Visit(x, botswana) & Visit(x, cambodia) & Visit
— (x, kyrgyzstan) & Visit(x, lithuania) & Visit(x, tonga) & Visit(x, suriname) & Visit(x,
<> costa_rica) & Visit(x, thailand) & Visit(x, bangladesh) & Visit(x, new_zealand) & Visit(x,
<~ nigeria) & Visit(x, pakistan) & Visit(x, palau) & Visit(x, libya) & Visit(x,
< bosnia_herzegovinia) & Visit(x, united_arab_emirates) & Visit(x, chad) & Visit(x,
— solomon_islands) & Visit(x, ireland)”
"HYPOTHESIS_FORMULA' = "exists x. Visit(x, libya)"
'WORLD_KNOWLEDGE _FORMULAS' = [
]
}

EXAMPLE_2 = { # example id 1121
'PREMISE' = "Everyone has visited Togo, Saudi Arabia, Malta, Bosnia & Herzegovinia, Gabon, Sierra
<~ Leone, El Salvador, The Bahamas, Mongolia, Mali and Djibouti”
'"HYPOTHESIS' = "Roland didn't visit Gabon"
'"PREMISE_FORMULA' = "forall x. Visit(x, togo) & Visit(x, saudi_arabia) & Visit(x, malta) & Visit(
< X, bosnia_herzegovinia) & Visit(x, gabon) & Visit(x, sierra_leone) & Visit(x, el_salvador)
— & Visit(x, bahamas) & Visit(x, mongolia) & Visit(x, mali) & Visit(x, djibouti)”

'"HYPOTHESIS_FORMULA' = "-Visit(roland, gabon)"
'WORLD_KNOWLEDGE_FORMULAS' = [
]

}

EXAMPLE_3 = { # example id 2850
'"PREMISE' = "Someone has visited every person and every place”
'"HYPOTHESIS' = "That person there didn't visit United States”
'"PREMISE_FORMULA' = "exists x. forall y. (Person(y) | Place(y)) -> Visit(x, y)"
"HYPOTHESIS_FORMULA' = "exists x. Person(x) & -Visit(x, united_states)"”
'"WORLD_KNOWLEDGE_FORMULAS' = [
]

Figure 9: Few-shot examples for items from the quantifier dataset. CURRICULUM item ids: 2857 1121 2850




B Prover9 Errors

The LLM generated largely syntactically correct
formulas of first-order logic, especially when pro-
vided with few-shot examples. However, there
were cases where the generated formulas resulted
in an error when fed into Prover9. In Tables 1 and
2 the P9 columns present label-wise accuracy re-
sults that have been filtered to exclude items where
Prover9 generated an error (i.e., the denominator of
the accuracy metric does not include those items).
In most cases, the difference is small—note that
considering the filtered or un-filtered version never
changes whether the Prover9 result is higher than
the direct answer). For completeness, this section
shows a comparison of the filtered and un-filtered
results.

A total of 310 errors were encountered over
3600 generated formula sets (300 for each of 6
datasets and 2 prompt schemes). The breakdown
of errors encountered can be found in Table 5.



Label E C N
¥ \'% ¥ Y ¥ \'%

Dataset Prompt
e forms 82 82 00 0.0 99.0  99.0
comparative . ms+wk 1000 100.0 00 00 00 00
conditional ™ 579 598 484 500  100.0 100.0
1 forms+wk 358 370 474 484 1000 100.0
evation forms 00 00 978 989 96.5 100.0
g forms+wk 00 00 933 988 957 982
N 578 598 246 272 97.9  100.0
qu forms-+wk 61.1 640 211 235 96.9 100.0

Table 3: Unfiltered (?) and filtered (V) mean label-wise accuracy for NLI classification when using the LLM-
generated formulas to infer the label with Prover9.

Label E N/C
¥ Y ¥ N\
Dataset Prompt
lexical forms 1.3 1.5 89.9 100.0
forms+wk 52.0 653 272 348
forms 13.7 16.7 74.5 90.9

monotonicity forms+wk 36.0 50.0 36.6 546

Table 4: Unfiltered (ﬁ) and filtered (V) mean label-wise accuracy for RTE classification when using the LLM-
generated formulas to infer the label with Prover9.

Prover9 Error forms forms+wk
parsing error (unexpected symbol) 79 92
symbol used with multiple arities 25 65
symbol used as both relation and function 14 35

Table 5: Counts of error types encountered by Prover9 when given the LLM-generated formulas. A total of 1 800
sets of formulas were generated for each prompt scheme (forms and forms+wk).
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