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Abstract

This paper introduces the Compact Math Cor-
pus (CMC), a preliminary resource for natural
language processing in the mathematics do-
main. We process three open-access under-
graduate textbooks from distinct mathematical
areas and annotate them in the CoNLL-U for-
mat using a lightweight pipeline based on the
spaCy Small model. The structured output
enables the extraction of syntactic bigrams and
TF-IDF scores, supporting a syntactic-semantic
analysis of mathematical sentences.

From the annotated data, we construct a classi-
fication dataset comprising bigrams potentially
representing mathematical concepts, along
with representative example sentences. We
combine CMC with the conversational corpus
UD English EWT and train a logistic regression
model with K-fold cross-validation, achieving
a minimum macro-F1 score of 0.989. These
results indicate the feasibility of automatic con-
cept identification in mathematical texts.

The study is designed for easy replication in
low-resource settings and to promote sustain-
able research practices. Our approach offers
a viable path to tasks such as parser adap-
tation, terminology extraction, multiword ex-
pression modeling, and improved analysis of
mathematical language structures.

1 Introduction

Mathematical textbooks, though precise and struc-
tured, present unique challenges to standard Nat-
ural Language Processing (NLP) tools. Their lan-
guage differs significantly from general-domain
English, incorporating symbolic notation, dia-
grams, and domain-specific terminology. Conse-
quently, models trained primarily on non-technical
corpora often underperform on this type of texts.

Recent benchmarks such as MATHVISTA (Lu
et al., 2024) illustrate these challenges. Even
advanced vision-language models, for example:
GPT-4V, achieve accuracy in the range 50%

when tasked with understanding mathematical
content (see Figure 3, Appendix A). Meanwhile,
datasets including GSM8K (Cobbe et al., 2021)
and MATH (Hendrycks et al., 2021) focus on
mathematical problem solving, providing ques-
tion–answer pairs, but lack the linguistic annota-
tions necessary for syntactic or semantic analysis.

Other resources have been introduced for the pro-
cessing of the mathematical language. An exam-
ple is NaturalProofs (Welleck et al., 2021), which
focuses on theorem proving and alignment of for-
mal and informal proofs, but does not address the
broader expository writing found in instructional
or pedagogical texts. This scarcity limits the de-
velopment and evaluation of NLP tools tailored
for mathematical language. The Compact Math
Corpus (CMC) aims to help bridge this gap by
offering a preliminary, automatically annotated re-
source, not a gold standard, but a practical starting
point for linguistic processing in this domain.

The CMC is built from three open-access under-
graduate textbooks: Abstract Algebra: Theory and
Applications (Judson, 2022), Linear Algebra (Hef-
feron, 2022), and Discrete Mathematics: An Open
Introduction (Levin, 2024), all sourced from the
Open Math Textbook Initiative1. Using a compu-
tationally lean NLP pipeline based on the spaCy
Small model (Honnibal et al., 2020), we auto-
matically annotate these texts in the CoNLL-U for-
mat2, capturing both morphological and syntactic
features.

Designed for low-resource and sustainable set-
tings (Luccioni et al., 2023), our pipeline prioritizes
accessibility and replicability. To assess its utility,
we extract syntactic bigrams from CMC, combine
them with the conversational UD English EWT
corpus (Silveira et al., 2014), and pair each bigram
with a representative sentence from its source cor-

1https://textbooks.aimath.org/
2https://universaldependencies.org/

https://textbooks.aimath.org/
https://universaldependencies.org/


pus. We then train a logistic regression model us-
ing scikit-learn’s LogisticRegression with
K-fold cross-validation. The model achieves a min-
imum macro-F1 score of 0.989, indicating that
cost-effective methods can effectively support the
detection of mathematical concepts.

We release the annotated corpus and supporting
materials on GitHub3.

2 Corpus Preprocessing and Annotation

The Compact Math Corpus (CMC) was constructed
from the three undergraduate-level textbooks in-
troduced in the previous section, each covering a
distinct area of mathematics. All texts are openly
licensed and available in PDF format.

Although LATEX is generally a more suitable for-
mat for mathematical texts due to its richer struc-
tural markup (Collard et al., 2024; de Paiva et al.,
2023), most educational materials are distributed
in PDF format, which aligns better with our goal
of scalability.

To better understand the trade-offs involved, we
processed a matched section from the Linear Al-
gebra textbook in both LATEX and PDF formats.
The source LATEX was converted to JSON using
pylatexenc4, and the PDF using PyMuPDF5.
Both outputs were then passed through the same
annotation pipeline, and we extracted compounds6

from the resulting CoNLL-U files.
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Figure 1: Overlap of Compounds Between LATEX and
PDF.

Of the total compounds detected, 23 appeared
in both formats, 6 were exclusive to LATEX, and 15
were exclusive to PDF (see Figure 1). These results

3https://github.com/andreafer-uni/
Compact-Math-Corpus

4https://pylatexenc.readthedocs.io/
5https://pymupdf.readthedocs.io/
6In UD, a compound refers to a noun–noun construction

where one noun modifies another.

indicate that, despite some discrepancies, PDF-
based processing yields comparable compound ex-
traction quality, an encouraging outcome given the
prevalence and accessibility of PDF materials in
educational settings.

2.1 Preprocessing

Following best practices in corpus develop-
ment (Collard et al., 2024), PDF textbooks were
converted to structured JSON to support consistent
downstream analysis.

Linguistic content was extracted using the
PyMuPDF library, which provides raw text and
layout information. Since PDFs prioritize visual
formatting over semantic structure, extraction in-
troduced common issues, including token merging,
incorrect sentence segmentation, hyphenation arti-
facts, and irregular or misplaced line breaks.

To address these concerns, we applied a prepro-
cessing pipeline with anomaly detection and clean-
ing steps, including sentence filtering, non-ASCII
character removal, and format normalization. The
cleaned text was stored in JSON and parsed using
spaCy Small to generate part-of-speech and de-
pendency annotations in CoNLL-U format7.

This setup enables us to evaluate the perfor-
mance of general-purpose NLP tools on math-
heavy texts and points to challenges such as sym-
bolic content, domain-specific terminology, and
structural noise, areas where parser adaptation or
multimodal integration may improve outcomes.

2.2 Linguistic Annotation

To assess the performance–efficiency balance of
our method, we compared spaCy’s small model
(en core web sm) with its transformer-based
counterpart (en core web trf) on a section of
the Linear Algebra textbook.

As shown in Figure 2, both models produced
nearly identical counts of tokens, lemmas, and
unique words. The main difference was in sen-
tence segmentation, where the transformer model
generated more sentence boundaries. However,
this did not affect the performance of our down-
stream classification task, supporting the adequacy
of the compact model given its streamlined compu-
tational requirements.

7See (Nivre et al., 2016) for a complete overview of the
UD framework and CoNLL-U structure.

https://github.com/andreafer-uni/Compact-Math-Corpus
https://github.com/andreafer-uni/Compact-Math-Corpus
https://pylatexenc.readthedocs.io/
https://pymupdf.readthedocs.io/
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Figure 2: Sentence segmentation differences between
transformer-based and small models.

To enhance the linguistic value of the annotation
process, the use of the CoNLL-U format provides
substantial linguistic benefits. In contrast to un-
structured text, syntactically annotated corpora en-
able the systematic recognition of domain-specific
constructions such as compounds and multiword
expressions (MWEs), which act as indicators of
domain-specific language (Collard et al., 2022).

As highlighted in Table 1, the integration of syn-
tactic information, specifically the dependency re-
lations captured by Universal Dependencies (UD),
increased the prominence of mathematically rele-
vant bigrams in the Compact Math Corpus (CMC).
For example, the terms vector space, linear combi-
nation, and closed formula not only received high
TF-IDF scores after annotation, but also aligned
well with the core mathematical concepts.

Before CoNLL-U After CoNLL-U
Bigram TF-IDF Bigram TF-IDF

vector space 1328.53 vector space 1957.41
closed formula 834.34 closed formula 1105.03
linear combination 726.46 linear combination 1008.42
recurrence relation 668.48 recurrence relation 831.47
bit string 585.78 bit string 804.58

Table 1: Top 5 TF-IDF bigrams in the Compact Math
Corpus before and after CoNLL-U annotation.

The syntactic layer, though often optional in
modern NLP pipelines, remains crucial for appli-
cations that prioritize interpretability and robust-
ness. As noted by Sag et al. (Sag et al., 2002), the
combination of symbolic and statistical methods
produces a more complete view of language, partic-
ularly in detecting MWEs that define mathematical
vocabulary.

Although the CMC is not manually annotated,

its syntactic enrichment via spaCy and CoNLL-
U enables a hybrid pipeline in which frequency-
based methods such as TF-IDF are grounded in
structural patterns. This becomes evident when
we compare the results before and after annotation.
After syntactic parsing, high-ranking terms became
more semantically coherent, whereas noisy entries
(e.g. many way) were relatively de-emphasized.

Together, the CoNLL-U annotation process en-
hances the linguistic utility of the CMC by facili-
tating the extraction of interpretable, conceptually
grounded MWEs, despite being derived from non-
pretrained model. This makes the resource not only
computationally efficient but also linguistically rich
enough to support downstream tasks including clas-
sification and terminology extraction.

3 Dataset Construction

To investigate whether syntactic bigrams can help
distinguish mathematical language from general
English, we constructed a binary classification
dataset combining the Compact Math Corpus
(CMC) with the UD English Web Treebank (EWT),
leveraging their shared CoNLL-U format.

3.1 The UD-EWT

The UD English Web Treebank (EWT) is a gold-
standard corpus that provides syntactic and mor-
phological annotations for English as part of the
Universal Dependencies (UD) project. It contains
informal web-based texts from blogs, emails, fo-
rums, product reviews, and Q&A websites such as
Yahoo! Answers.

Due to its conversational and general-domain
nature, EWT serves as a useful baseline for com-
parison with domain-specific corpora such as CMC.
Since both CMC and UD-EWT follow the same
annotation format, we used this compatibility to
extract and compare syntactic features between cor-
pora.

3.2 Bigrams and Labeling

To assess the potential of syntactic bigrams for
the recognition of mathematical concepts, we first
extracted bigrams from UD-EWT using the same
TF-IDF methodology applied to CMC. We then
compared the resulting lists and removed all over-
lapping bigrams, retaining only the unique ones
from each corpus.

This comparison produced two distinct sets of
bigrams: one containing candidates for mathemat-



ical concepts (unique to CMC) and another re-
flecting general English patterns (unique to EWT).
For each bigram, we retrieved representative sen-
tences from their respective corpora in which the
bigrams occurred. These sentences were labeled
as True (mathematical concept) or False (non-
mathematical), resulting in a dataset of 2,796 sen-
tences evenly balanced between mathematical and
general-domain content.

The resulting dataset forms the basis for the clas-
sification task described in the next section, where
we evaluate the feasibility of concept recognition
using a logistic regression model.

4 Identifying Mathematical Concepts

To evaluate whether syntactic bigrams can effec-
tively signal mathematical content, we framed a
binary classification task: Given a sentence con-
taining a candidate bigram, predict whether it ex-
presses a mathematical concept. The classifier op-
erates solely on text-based features, without access
to labels or metadata from the source corpora.

4.1 Model and Setup

We trained a logistic regression model us-
ing TF-IDF features over unigrams and bi-
grams (max features = 5,000), implemented with
scikit-learn (Pedregosa et al., 2011). We
opted for logistic regression due to its efficiency,
interpretability, and reliable performance in sparse
feature spaces, well-suited to our minimal NLP
setup.

4.2 Performance and Evaluation

When we evaluated the logistic regression model
using 10-fold cross-validation over the dataset, the
classifier achieved a macro F1-score of 0.996 ±
0.003, indicating consistent performance across all
folds. Table 2 reports precision, recall, and F1-
scores per class.

Although performance is reliable within the
labeled dataset, it is important to note that the
model relies on sparse, surface-level features and
may struggle with ambiguous or out-of-distribution
cases. However, it correctly recognized sentences
containing previously unseen bigrams, indicating
that the model generalizes based on sentence con-
text rather than simple memorization.

Metric Mean Std

Accuracy 0.9964 0.0034
Precision 0 0.9934 0.0072
Recall 0 0.9993 0.0023
F1 0 0.9963 0.0035
Precision 1 0.9993 0.0022
Recall 1 0.9938 0.0069
F1 1 0.9965 0.0033
F1 Macro 0.9964 0.0034

Table 2: Cross-validation results (mean ± std) for logis-
tic regression classifier.

4.3 Error Analysis and Interpretability

The confusion matrix (see Appendix B, Figure 4)
confirms the model’s consistent performance: only
three mathematical examples were misclassified
as non-mathematical, and no false positives were
observed.

Zero-shot evaluations on held-out examples (Ap-
pendix C, Table 3) revealed a similar generalization
capacity. The model correctly labeled unseen con-
cepts such as probability distribution and integral
calculus with high confidence, while remaining un-
certain in borderline cases. An inspection of errors
showed that school-related phrases such as school
project and homework folder introduced ambiguity
due to their lexical proximity to educational and
mathematical contexts.

We further explored the behavior of the models
through feature weight analysis (Appendix D, Fig-
ure 5). Some high-weight features aligned with
intuitive mathematical concepts. However, others
reflected corpus-specific statistical artifacts, terms
email or document identifiers that lacked semantic
relevance. This contrast illustrates how statistical
models often rely on distributional regularities that
may not align with human notions of meaning, un-
derscoring the gap between symbolic interpretabil-
ity and statistical association.

5 Conclusions and Future Directions

Summary of Findings. This paper presented the
Compact Math Corpus (CMC), a syntactically an-
notated resource built from open-access instruc-
tional materials and processed using a lightweight
NLP pipeline based on spaCy Small and the
CoNLL-U format. Our goal was to enable struc-
tured linguistic analysis of mathematical language
in a format that supports downstream applications



such as terminology extraction and concept classi-
fication.

Through a comparison of TF-IDF bigrams be-
fore and after annotation, we confirmed that syn-
tactic information enhances the identification of
multiword expressions aligned with core mathe-
matical concepts. Furthermore, we constructed
a balanced dataset by combining CMC with UD-
EWT and found that a non-neural approach was
able to effectively distinguish mathematical from
general-domain content using only text-based fea-
tures.

These findings indicate that even a non-
pretrained, resource-efficient model can accurately
detect domain-specific content, provided the in-
put is linguistically enriched and well balanced.
The approach is computationally efficient and in-
terpretable, making it a suitable framework for ed-
ucational or resource-constrained NLP scenarios.
Although more powerful models may improve gen-
eralization on ambiguous input, our results pro-
vide evidence that structured features like those in
CoNLL-U can support accurate concept classifica-
tion in controlled settings.

Future Directions in Mathematical NLP Fu-
ture work will explore expanding the CMC with ad-
ditional textbooks across a broader range of math-
ematical topics, as well as refining the annotation
pipeline to improve linguistic coverage.

Furthermore, the classification task can be ex-
tended by incorporating richer context (e.g., sur-
rounding sentences or section-level cues) and test-
ing generalization on unseen technical or scientific
domains. Developing a small-scale gold-standard
evaluation set with human-labeled concept phrases
could further support benchmarking and model cal-
ibration.

An open direction for future research involves
integrating symbolic representations, such as for-
mulas or equation labels, with the current linguistic
layer remaining an open direction. Despite being
outside the scope of this initial study, such integra-
tion would enable a more comprehensive modeling
of mathematical discourse, combining syntactic
structure with symbolic reasoning.

6 Limitations

The main limitations of this study stem from its
resource-constrained setup and reliance on general-
purpose tools not specialized for mathematical lan-
guage. The use of the spaCy Small model,

while efficient and accessible, introduces trade-
offs in parsing accuracy, particularly for domain-
specific terminology, symbolic expressions, and
non-standard syntactic constructions typical of
mathematical discourse.

Another concern involves the quality of the in-
put data. Although the CoNLL-U format assumes
clean, well-formed text, most of our source mate-
rial originated from PDFs, which are optimized for
visual layout rather than semantic structure. This
introduces common issues such as token merging
and sentence-boundary errors. Despite preprocess-
ing steps mitigated some of these problems, they
did not completely eliminate noise.

A further challenge lies in the lack of a domain-
specific, human-annotated gold standard. Without
a reliable reference for comparison, it is difficult
to measure parsing quality or validate the accuracy
of syntactic analyses. This restricts our ability to
compare tools rigorously or perform fine-grained
error analysis. Creating a gold-standard treebank
for mathematical texts within the CoNLL-U frame-
work remains an open direction for future work.

Although compact models promote reproducibil-
ity and sustainability, they may underperform in
complex linguistic contexts where transformer-
based alternatives would offer greater accuracy. In
our case, the simplicity of the classification task
helped offset this topic, but it remains a relevant fac-
tor when considering more advanced downstream
applications.
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Appendix

This appendix provides supplementary material, including detailed linguistic annotations in the CoNLL-U
style, as referenced in the main text.

A MathVista Experiment Results

The following graph comes from the MATHVISTA paper website at https://mathvista.github.
io/.

Figure 3: Foundation model performance on MathVista visual reasoning tasks.
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Figure 4: Confusion matrix for the classification task. The model correctly classifies most instances, with only
a small number of false negatives, indicating effective performance in distinguishing mathematical from non-
mathematical concepts.
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C Zero Shot Predictions

Bigram Sentence Predicted Class Probability
linear function A linear function represents a straight line on

a Cartesian plane and has a constant rate of
change.

1 (Math) 92.6%

probability distribution The shape of a probability distribution affects
how likely specific outcomes are.

1 (Math) 81.6%

school project She worked late on her school project about
environmental science.

1 (Math)* 63.1%

integral calculus Integral calculus deals with accumulation and
the calculation of areas under curves.

1 (Math) 76.8%

homework folder He forgot his homework folder on the bus. 0 (Non-Math) 49.3%

Table 3: Zero-shot predictions on bigrams not seen during training. *Incorrect prediction — school project is not a
mathematical concept.

D Model Interpetation
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Figure 5: Top weighted features from the logistic regression model. Positive weights (blue) indicate strong
association with mathematical concepts, while negative weights (orange) are associated with non-mathematical
content. Some features may reflect structural tokens (e.g., doc id, email) from the dataset.
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