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LLMs

• LMs have come a long way, leading to LLMs. 


• I feel really tired, what should I do? When tired, you must 
rest, lie down and close your eyes, take a gentle walk, put 
your feet up. 


• BERT: When really tired […]


• Chat GPT: 
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• Chat GPT: 
Their predictions are lexical, over the next most probable sequence of words. 



Human Language Understanding 

• Psycholinguistic experiments: humans language 
understanding is based on prediction: 


• Structural


• Syntactic, semantic, pragmatic, phonologic, 
morphologic, …. 


• A famous test: Garden path sentence



Garden Path

The faithful employees understood [NP] the technical 
contract  would be changed very soon.




Garden Path

The faithful employees understood




Garden Path

The faithful employees understood


SbjVerb -> 
Obj



The faithful employees understood the technical contract


SbjVerbObj ->  Adv

Garden Path



The faithful employees understood the technical contract 
would be.


SbjVerbObj              Verb

Garden Path



The faithful employees understood the technical contract 
would be changed very soon.

SbjVerb    SbjVerbObj

Garden Path



As the woman edited the magazine entertained the guests.


SV       SVO       SVOV


SV       SVS        SVSV


Pinned by Bever 1970, arguing for existence of 


primordial relational structures in human sentence 
processing.

Garden Path Sentences



Related Work for Humans
• Psycholinguistic experiments with Eye Tracking to measure human reading time.


• Pickering and Traxler, 1998, “Recovery from Garden Path sentences”, classified GP, including:


1. NP/S: a sentential complement S is mistaken for a noun phrase NP. 


•  The faithful employees understood [NP] the technical contract would be changed very 
soon.


2. NP/Z: a main verb is expected to have an NP as object, but it does not  (Z for zero objects).


• Because the employees negotiated [NP] the technical report would be changed very soon. 


• Sturt, Pickering Crocker, 1999, “Structural change and reanalysis in language comprehension” 


• 64 GP + controls


• Grodner et al, 2003, “Reanalysis in human sentence comprehension”


• 80 GP + controls



Related Work for LLMs
• Surprisal was related to human reading times.  

• Hale, 2001, 2003, 2006: the information theoretic 
measure of surprisal should correlate with humane 
cognitive load.


•  Levy 2008, Smith&Levy 2013: experimental evidence 
but only for naturalistic data. 


• Wilcox et al 2023: 5 different language families, ditto as 
above.



Problems with SP

• Schijndel and Linzen 2018, 2021, Arehalli et al 2022, 
Huang et al 2023:


• SP does not correlate well with human reading times in 
Garden Path sentences


• It cannot distinguish between different structural types 
of GP, e.g. easy versus hard garden path. 



Our solution

sends an element U of X to its “data”

each data point is called a “section"

acts on the preorder by restricting PU to 
PV, i.e. the data on U to the data on V.

1970; Tierney, 2011). More recently, sheaves and
presheaves have been applied to formalise the con-
sistency of different forms of concrete data. Here
we have examples of data coming from quantum
mechanics (Abramsky and Brandenburger, 2011),
signal processing (Robinson, 2017), graph neu-
ral networks (Bodnar et al., 2022), and natural
language (Wang et al., 2021a,b; Lo et al., 2022;
Huntsman et al., 2024; Philips, 2019; Bradley et al.,
2022). Notably, measures similar to IF were de-
veloped for physical experiments to compute the
amount of unsharpness of experimental data (Val-
lée et al., 2024). These were preliminarily also
tested on linguistic data, e.g. for the interpretations
of phrases with semantic and anaphoric ambigui-
ties (Wang et al., 2021a; Lo et al., 2022, 2023). A
recent paper explores their applicability to ambigu-
ities arising in garden path sentences but does not
consider the general case nor the range of instantia-
tions we offer here, works with the masked feature
of BERT and has not been tested on semantic plau-
sibility (Wang and Sadrzadeh, 2024).

3 Methodology

We use topological spaces and their associated data
to model the sub-phrases of a sentence and their
interpretations. The topological spaces model the
relation between the sub-phrases as they are read
by a human subject from a piece of text, i.e. incre-
mentally and according to the linear flow of time.
This order is also known as the prefix order or the
information order. The data associated to each sub-
phrase models the possible different interpretations
of each sub-phrase and their probabilities. Here,
we work with the completions of sub-phrases into a
sentence and the probability of their syntactic struc-
tures. This is obtained via a combination of GPT-2
and spaCy (with transformers). In what follows,
we first go over the abstract model, then instantiate
it to the concrete data of natural language, finally
develop a set of measure that compute the differ-
ences between the different interpretations, giving
rise to the notion of an Incompatibility Fraction.

3.1 Abstract Model

A topological space X is a tuple (X, ⌧) where X is
a set of points and ⌧ ⇢ P(X) is the set of open sets

which contains the empty set and is closed under
arbitrary unions and finite intersections.

The open sets of a topological space can also
have data associated to them. These are formalised

through the notion of a presheaf, which is a map
P that sends each subset U of X to the set PU of
its data. The elements of the set PU are called sec-

tions over U , and can be seen as the possible data
points on U . Here, we are interested in events and
the event presheaf defined as follows. Given a set
O of outputs (e.g. syntactic or semantic structures),
an event is a map of the type s : U ! O. When-
ever V is a subset of U , i.e. V ✓ U , the presheaf
restricts PU , i.e. the data points on U , to PV , i.e.
the data points on V . For each element of s 2 PU ,
the restriction is denoted by s|

V
. This procedure is

depicted in Fig. 1.

Figure 1: The restriction map of a presheaf.

Presheaves define a notion of consistency within
sets via restriction maps. Consistency can also
be defined across different sets. Given a presheaf
P over a topological space X , we say that there
is a gluing between two sections sU 2 PU and
sV 2 PV iff sU and sV are locally consistent or
compatible, i.e. sU |U\V = sV |U\V . This defini-
tion leads to the fact that if there exists a gluing
between two sections in PU and PV , then there
will be an intersection between their restrictions
PU |

U\V and PV |
U\V , see Fig.2.

Figure 2: The presheaf structure over intersecting sets.

In order to model probabilistic events, an event
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(X, < )P(X, < )

U ⟶ P(U)

V < U ⟶ P(V < U)

• A framework that combines statistics and structure.


• An event presheaves            over a preorder             and a set 
of events                 consists of:
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There is a glueing between PU and PV 

whenever there is an intersection between U and V, so is one between 

their restrictions               and             .

∩

PU ∣U∩V PV ∣U∩V



Probabilities
When the data is probabilistic, the presheaf map is composed  with the 
distribution map.

The probabilistic presheaf assigns probability distributions to elements U of X:
presheaf P is post-composed with a distribution
map D giving rise to a probabilistic event presheaf
DP . To a subset U of X the probabilistic presheaf
assigns a set of probability distributions {d | d :
U ! R+}. Whenever V ✓ U , it computes the
marginals of the probabilities of elements of U

when restricted to V . Formally, this is as follows:

dV (v) =
X

u2V
dU (u)

These probabilities are measured over our original
set of outcomes O, via the principles events of the
framework, i.e. s : U ! O.

3.2 Concrete Model

In the context of human sentence processing, our
topological space X is the set of all incremental
sub-phrases of the sentence under consideration.
The order of the topology is the prefix relation
over the sub-phrases of this sentence. Formally
speaking, given the vocabulary � of the sentences
and �

⇤ the set of phrases over it, for a, b, c, · · · 2
�
⇤, we have

a  ab  abc  · · ·

As an example consider the sentence “The employ-
ees understood the contract”, where we have the
following instances of the prefix ordering:

The employees  The employees understood  The

employees understood the contract  The employees

understood the contract would change.

In this sentence, however, there is no order rela-
tion between sub-phrases such as “The employees”
and “employees understood”. Despite the fact that
they share “employees”, none of them is a prefix
of the other.

For the purposes of the current paper, we focus
on a syntactic event presheaf, which assigns syn-
tactic structures to completions of the sub-phrases
into a full sentence. A section of the probabilistic
event presheaf DP will then consist of a probabil-
ity distribution over the syntactic structures of these
completions. The syntactic structures are obtained
using the transformer version of the dependency
parser spaCy (Choi et al., 2015; Robinson, 1970).
This parser returns a single parse for a full sen-
tence. For example, the dependency parse for the
sentence “The employees understood the contract
would change” is as follows:

The completions of the sub-phrases and their
statistics are obtained using the GPT-2 model. See

The employees understood the contract would change

det nsubj
root

det
nsubj

aux

ccomp

Figure 3: Dependency relations in the sentence The

employees understood the contract would change..

below for three different completions of the sub-
phrase of “The employee understood” and their
dependency structures.

The employees understood that their salaries varied

The employees understood the risks in advance

The employees understood they also had freedom

All of these lead to the same partial parse when re-
stricted to the context “The employees understood”,
namely:

The employees understood [. . . ] [. . . ] [. . . ] [. . . ]

To obtain a syntactic structure for a sub-phrase,
we use the restriction operations from the the
presheaf, where we only keep the dependency in-
formation of each sub-phrase and ignore the rest
of the sentence. For instance, the structure of the
sub-phrase “The employees understood” restricted
to “The employees” is obtained as follows:

The employees understood [. . . ] [. . . ] [. . . ] [. . . ]

����
The employees

= The employees [. . . ]

The probability distributions associated to each
parse are obtained from the predictions of GPT-2 af-
ter sampling from 1000 instances and normalising
the results. An example distribution is as follows:

d( The employees understood [. . . ] [. . . ] [. . . ] [. . . ] ) =0.80

d( The employees understood [. . . ] [. . . ] [. . . ] [. . . ] ) =0.15

d( The employees understood [. . . ] [. . . ] [. . . ] [. . . ] ) =0.05
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We call these presheaves,  probabilistic event presheaves.

𝒟PU =

V < U 𝒟P
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• A vocabulary:  


{the, employees, understood, contract, change, would} 


• The set of phrases over this vocabulary: 


{The, The employees, The employees understood, The employees understood the 
contract, … }


• The prefix relation defines the preorder:


The <The employees <The employees understood< The employees understood the 
contract


• The predictions over subphrases (completions) is the data of presheaf. 


• Comprehending the subphrases by assigning interpretations are the events: syntactic, 
semantics, pragmatic, all of this together.

Human Sentence Processing
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they share “employees”, none of them is a prefix

of the other.

For the purposes of the current paper, we focus

on a sy
nta

ctic
event presheaf, which assig

ns syn-

tactic stru
ctures to completions of the sub-phrases

into a full sentence. A section of the probabilist
ic

event presheaf D
P

will then consist
of a probabil-

ity distri
bution over the syntactic stru

ctures of these

completions. The syntactic stru
ctures are obtained

using the transformer versio
n of the dependency

parser sp
aCy

(Choi et al., 2015; Robinson, 1970).

This parser returns a single parse
for a full sen-

tence. For example, the dependency parse
for the

sentence “The employees understo
od the contract

would change” is as follows:

The completions of the sub-phrases and their

statisti
cs are obtained using the GP

T-2
model. See

The employees understo
od the contract would change
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Figure 3: Dependency
relations in the sentence The
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below for three diffe
rent completions of the sub-

phrase of “The employee understo
od” and their

dependency stru
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All of these lead to the same partia
l parse

when re-

stric
ted to the context “The employees understo

od”,

namely:

The employees understo
od [. . .

] [. . .
] [. . .

] [. . .
]

To obtain a syntactic stru
cture for a sub-phrase,

we use
the restri

ction operations from
the the

presheaf, where we only keep the dependency in-

formation of each sub-phrase and ignore the rest

of the sentence. For instance, the stru
cture of the

sub-phrase “The employees understo
od” restric

ted

to “The employees” is obtained as follows:

The employees understo
od [. . .

] [. . .
] [. . .

] [. . .
]

����
The employees

=
The employees [. . .

]

The probability
distr

ibutions asso
ciated to each

parse
are obtained from the predictions of GP

T-2
af-

ter sampling from 1000 instances and normalisin
g

the results.
An example distr

ibution is as follows:

d(
The employees understo

od [. . .
] [. . .

] [. . .
] [. . .

] )
=0

.80

d(
The employees understo

od [. . .
] [. . .

] [. . .
] [. . .

] )
=0

.15

d(
The employees understo

od [. . .
] [. . .

] [. . .
] [. . .

] )
=0

.05
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od”. Despite the fact that

they share “employees”, none of them is a prefix

of the other.
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for a full sen-

tence. For example, the dependency parse
for the
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would change” is as follows:
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cs are obtained using the GP
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All of these lead to the same partia
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when re-

stric
ted to the context “The employees understo

od”,

namely:

The employees understo
od [. . .

] [. . .
] [. . .

] [. . .
]

To obtain a syntactic stru
cture for a sub-phrase,

we use
the restri

ction operations from
the the

presheaf, where we only keep the dependency in-

formation of each sub-phrase and ignore the rest

of the sentence. For instance, the stru
cture of the

sub-phrase “The employees understo
od” restric

ted

to “The employees” is obtained as follows:

The employees understo
od [. . .

] [. . .
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Method

presheaf P is post-composed with a distribution
map D giving rise to a probabilistic event presheaf
DP . To a subset U of X the probabilistic presheaf
assigns a set of probability distributions {d | d :
U ! R+}. Whenever V ✓ U , it computes the
marginals of the probabilities of elements of U

when restricted to V . Formally, this is as follows:

dV (v) =
X

u2V
dU (u)

These probabilities are measured over our original
set of outcomes O, via the principles events of the
framework, i.e. s : U ! O.

3.2 Concrete Model

In the context of human sentence processing, our
topological space X is the set of all incremental
sub-phrases of the sentence under consideration.
The order of the topology is the prefix relation
over the sub-phrases of this sentence. Formally
speaking, given the vocabulary � of the sentences
and �

⇤ the set of phrases over it, for a, b, c, · · · 2
�
⇤, we have

a  ab  abc  · · ·

As an example consider the sentence “The employ-
ees understood the contract”, where we have the
following instances of the prefix ordering:

The employees  The employees understood  The

employees understood the contract  The employees

understood the contract would change.

In this sentence, however, there is no order rela-
tion between sub-phrases such as “The employees”
and “employees understood”. Despite the fact that
they share “employees”, none of them is a prefix
of the other.

For the purposes of the current paper, we focus
on a syntactic event presheaf, which assigns syn-
tactic structures to completions of the sub-phrases
into a full sentence. A section of the probabilistic
event presheaf DP will then consist of a probabil-
ity distribution over the syntactic structures of these
completions. The syntactic structures are obtained
using the transformer version of the dependency
parser spaCy (Choi et al., 2015; Robinson, 1970).
This parser returns a single parse for a full sen-
tence. For example, the dependency parse for the
sentence “The employees understood the contract
would change” is as follows:

The completions of the sub-phrases and their
statistics are obtained using the GPT-2 model. See

The employees understood the contract would change

det nsubj
root

det
nsubj

aux

ccomp

Figure 3: Dependency relations in the sentence The

employees understood the contract would change..

below for three different completions of the sub-
phrase of “The employee understood” and their
dependency structures.

The employees understood that their salaries varied

The employees understood the risks in advance

The employees understood they also had freedom

All of these lead to the same partial parse when re-
stricted to the context “The employees understood”,
namely:

The employees understood [. . . ] [. . . ] [. . . ] [. . . ]

To obtain a syntactic structure for a sub-phrase,
we use the restriction operations from the the
presheaf, where we only keep the dependency in-
formation of each sub-phrase and ignore the rest
of the sentence. For instance, the structure of the
sub-phrase “The employees understood” restricted
to “The employees” is obtained as follows:

The employees understood [. . . ] [. . . ] [. . . ] [. . . ]

����
The employees

= The employees [. . . ]

The probability distributions associated to each
parse are obtained from the predictions of GPT-2 af-
ter sampling from 1000 instances and normalising
the results. An example distribution is as follows:

d( The employees understood [. . . ] [. . . ] [. . . ] [. . . ] ) =0.80

d( The employees understood [. . . ] [. . . ] [. . . ] [. . . ] ) =0.15

d( The employees understood [. . . ] [. . . ] [. . . ] [. . . ] ) =0.05
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In this sentence, however, there is no order rela-

tion between sub-phrases such as “The employees”

and “employees understo
od”. Despite the fact that

they share “employees”, none of them is a prefix

of the other.

For the purposes of the current paper, we focus

on a sy
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event presheaf, which assig
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into a full sentence. A section of the probabilist
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parser sp
aCy

(Choi et al., 2015; Robinson, 1970).

This parser returns a single parse
for a full sen-

tence. For example, the dependency parse
for the

sentence “The employees understo
od the contract

would change” is as follows:
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cs are obtained using the GP

T-2
model. See

The employees understo
od the contract would change

det
nsubj

root
det

nsubj
auxccomp

Figure 3: Dependency
relations in the sentence The

em
plo

yees unders
to

od
th

e
contra

ct w
ould

ch
ange.

.

below for three diffe
rent completions of the sub-

phrase of “The employee understo
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All of these lead to the same partia
l parse

when re-

stric
ted to the context “The employees understo

od”,

namely:

The employees understo
od [. . .

] [. . .
] [. . .

] [. . .
]

To obtain a syntactic stru
cture for a sub-phrase,

we use
the restri

ction operations from
the the

presheaf, where we only keep the dependency in-

formation of each sub-phrase and ignore the rest

of the sentence. For instance, the stru
cture of the

sub-phrase “The employees understo
od” restric

ted

to “The employees” is obtained as follows:

The employees understo
od [. . .
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we use
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the the

presheaf, where we only keep the dependency in-

formation of each sub-phrase and ignore the rest
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cture of the
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Incompatibility Fraction

Given two sub-phrases m1 and m1m2 of X with
m1  m1m2, suppose dm1m2 is the probability
distribution of the syntactic structures of m1m2.
Then the restriction of dm1m2 to m1 for any syntac-
tic structure o 2 O of m1 is computed as follows:

dm1m2 |m1 (o) = ⌃o02O dm1m2(oo
0)

This restriction sums the probabilities of all com-
pletions of m1 into m1m2, where m1 retained the
same syntactic structure after being completed by
m2. Note that, in general:

dm1m2 |m1 6= dm1

This is because the reader may have to do some
reanalysis when going from m1 to m1m2.

3.3 Measures

Each stage of the human reading process is mod-
elled by a pair of succeeding sub-phrases of a sen-
tence, e.g. (m1,m1m2). The overall process of
reading a sentence is modelled by a sequence of
these pairs, i.e. {(mi,mi+1)j}ajn�1 where n is
the number of words or regions in a sentence. As
an example, here is the first two pairs of a sequence
that models the employee sentence:

(The, The employees)

(The employees, The employees understood)

As humans read an incoming sub-phrase m1 of
a sentence, they construct interpretations for it and
assign probabilities to their interpretations. When
the next region m2 is read, a new set of interpre-
tations and probabilities are constructed, this time
for the sub-phrase m1m2. The reader expects that
the interpretations and probabilities of m1m2 to
be consistent with those of m1. If this is the case,
the sub-phrase m1m2 is comprehended and sen-
tence processing can carry on linearly. For critical
regions of GP sentences, however, this is not the
case and as a result sentence processing is halted.
This leads to a pause and possibly a reversal of the
order of reading thus higher reading times are ob-
served. Take our employee sentence and the pair of
sub-phrases therein (“The employees understood
the contract, The employees understood the con-
tract would change”). This pair sits at the critical
region of the garden path effect of the sentence.
The shared prefix “The employees understood the
contract” has a subject-verb-object structure in the
first sub-phrase, which is not consistent with the

subject-verb-subject structure after seeing “would
change” in the second sub-phrase.

In order to check whether the structure and prob-
abilities of the two succeeding sub-phrases m1 and
m1m2 of a sentence match, the larger sub-phrase
m1m2 is restricted to the smaller one m1 and the
degree of their divergence is estimated. This di-
vergence is what we refer to as the Incompatibility

Fraction IF.
A common choice for measuring divergence is

the Kullback–Leibler or KL-divergence. In our
case, we measure the KL-divergence between a
distribution dm1 to dm1m2|m1

, given below:

KL(dm1||dm1m2|m1
)=

X

o

dm1(o) log
dm1(o)

dm1m2|m1
(o)

KL is not always defined, in which case its symmet-
ric variant Jensen-Shannon divergence is used. In
the interest of space will not provide the formula.

Another choice is a metric similar to what is
known as Earth-Mover’s and measures the overlap
between two distributions by taking their min, i.e.P

o
min(dm1m2 |m1 (o), dm1(o)). The divergence

between the two distributions is then computed by
subtracting the overlap from 1. This leaves us with
the following formula:

1�
X

o

min(dm1m2 |m1 (o), dm1(o))

All three of these instantiations can be used, giving
rise to the following three measures:

IF-min : 1� ⌃omin(dm1(o), dm1m2 |m1 (o))

IF-KL : KL(dm1 ||dm1m2 |m1)

IF-JS : JS(dm1 ||dm1m2 |m1)

4 Experiments

We worked with two datasets put forwards by
Pickering and Traxler in Pickering and Traxler
(1998). Dataset 1 has GP sentences with com-
plement clause ambiguities. An example is the
following:

Dataset 1. (i) GP. The dog catcher wor-
ried the terrier which fell wouldn’t fit
into the box.

Dataset 2 has GP sentences with subordinate-
clause ambiguities. An example is the following:
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• Different divergence can be used here:  

syntactic ambiguities have been shown to result
in different levels of processing difficulty (Sturt
et al., 1999). So far, surprisal has not been able to
accurately predict the human reading times of GP
sentences and more importantly has not been able
to distinguish between easy versus hard sentences
(Schijndel and Linzen, 2018; van Schijndel and
Linzen, 2021; Huang et al., 2023).

In order to test the applicability of our frame-
work, we tested it on two GP datasets (Pickering
and Traxler, 1998), with hard (i.e., subordinate
clause) and easy (i.e., complement clause) ambi-
guities. Both datasets had a disambiguated con-
trol for each of their GP sentences. They also had
variants of them which were either semantically
plausible or implausible. IF was measured for all
these sentences and its predictions compared with
with human reading times and surprisal. All of
the instances we worked with, i.e. KL, JS, and
EM, correlated well with human reading times and
had very low errors, predicted the differences be-
tween GP sentences and their disambiguated con-
trols well, could distinguish between easy and hard
garden path, and outperformed surprisal. On the
semantic front, all the measures including surprisal
validated one of the hypotheses, that a semantically
implausible sub-phrase take longer to read. The
other hypothesis was about shorter GP effects in
implausible sentences, which could not be detected
by any of the measures. Dealing with these needs
an explicit encoding of the semantic structure of
sentences and we believe presheaves can also help.
Working out the details is left to future work.

2 Related Work

Inspired by applications of information theory to
Psycholinguistics (Attneave, 1959), Hale argued
that surprisal is a good measure for the cognitive
load faced by humans during sentence processing
(Hale, 2001, 2003, 2006). Surprisal measures the
degree of unpredictability of a word w given its
prefix context w1 · · ·wn and is computed via the
following formula:

SP (wn|w1. . .wn�1)=� log(P (wn|w1. . .wn�1))

Hale argued in favour of the use of surprisal in in-
cremental parsing procedures. Building on this,
Levy (2008) and later Smith and Levy (2013)
showed that surprisal can also model the cognitive
load modelled by constraint-based theories. The
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only provided experimental data for a handful of ex-
amples. Large scale validations on English (Levy,
2008; Smith and Levy, 2013) and eleven other lan-
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cles. Large scale data for GP sentences were not
taken into account until more recent times (Schi-
jndel and Linzen, 2018; van Schijndel and Linzen,
2021; Huang et al., 2023), where it was found out
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parser or the lexical predictions of a statistical lan-
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underestimated human reading times. Weighted
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ity. In this regard, Altmann et al. (1992); Altmann
and Steedman (1988) studied the role of referen-
tial information, Trueswell et al. (1994) worked on
the tenses of the verbs, and Pickering and Traxler
(1998) on the lexical information encoded in sen-
tential sub-phrases such as subject-verb and verb-
object. Most of this work has only been verified by
Psycholinguistic experiments on human subjects,
but some of it was also verified using statistical
machine learning methods such as clustering (Padó
et al., 2009).

Presheaves and sheaves are general mathemat-
ical models introduced to formalise and reason
about abstract notions of global consistency. They
originate from the work of Jean Leray (Leray,
1959), whose aim was to study partial differen-
tial equations from a purely topological perspec-
tive. Subsequent work then extended the use
of sheaf theory to other areas of mathematics,
such as algebraic geometry (Cartan, 1950; Serre,
1955; Grothendieck, 1957) and logic (Lawvere,

Surprisal:

Given two sub-phrases m1 and m1m2 of X with
m1  m1m2, suppose dm1m2 is the probability
distribution of the syntactic structures of m1m2.
Then the restriction of dm1m2 to m1 for any syntac-
tic structure o 2 O of m1 is computed as follows:

dm1m2 |m1 (o) = ⌃o02O dm1m2(oo
0)

This restriction sums the probabilities of all com-
pletions of m1 into m1m2, where m1 retained the
same syntactic structure after being completed by
m2. Note that, in general:

dm1m2 |m1 6= dm1

This is because the reader may have to do some
reanalysis when going from m1 to m1m2.

3.3 Measures

Each stage of the human reading process is mod-
elled by a pair of succeeding sub-phrases of a sen-
tence, e.g. (m1,m1m2). The overall process of
reading a sentence is modelled by a sequence of
these pairs, i.e. {(mi,mi+1)j}ajn�1 where n is
the number of words or regions in a sentence. As
an example, here is the first two pairs of a sequence
that models the employee sentence:

(The, The employees)

(The employees, The employees understood)

As humans read an incoming sub-phrase m1 of
a sentence, they construct interpretations for it and
assign probabilities to their interpretations. When
the next region m2 is read, a new set of interpre-
tations and probabilities are constructed, this time
for the sub-phrase m1m2. The reader expects that
the interpretations and probabilities of m1m2 to
be consistent with those of m1. If this is the case,
the sub-phrase m1m2 is comprehended and sen-
tence processing can carry on linearly. For critical
regions of GP sentences, however, this is not the
case and as a result sentence processing is halted.
This leads to a pause and possibly a reversal of the
order of reading thus higher reading times are ob-
served. Take our employee sentence and the pair of
sub-phrases therein (“The employees understood
the contract, The employees understood the con-
tract would change”). This pair sits at the critical
region of the garden path effect of the sentence.
The shared prefix “The employees understood the
contract” has a subject-verb-object structure in the
first sub-phrase, which is not consistent with the

subject-verb-subject structure after seeing “would
change” in the second sub-phrase.

In order to check whether the structure and prob-
abilities of the two succeeding sub-phrases m1 and
m1m2 of a sentence match, the larger sub-phrase
m1m2 is restricted to the smaller one m1 and the
degree of their divergence is estimated. This di-
vergence is what we refer to as the Incompatibility

Fraction IF.
A common choice for measuring divergence is

the Kullback–Leibler or KL-divergence. In our
case, we measure the KL-divergence between a
distribution dm1 to dm1m2|m1

, given below:

KL(dm1||dm1m2|m1
)=

X

o

dm1(o) log
dm1(o)

dm1m2|m1
(o)

KL is not always defined, in which case its symmet-
ric variant Jensen-Shannon divergence is used. In
the interest of space will not provide the formula.

Another choice is a metric similar to what is
known as Earth-Mover’s and measures the overlap
between two distributions by taking their min, i.e.P

o
min(dm1m2 |m1 (o), dm1(o)). The divergence

between the two distributions is then computed by
subtracting the overlap from 1. This leaves us with
the following formula:

1�
X

o

min(dm1m2 |m1 (o), dm1(o))

All three of these instantiations can be used, giving
rise to the following three measures:

IF-min : 1� ⌃omin(dm1(o), dm1m2 |m1 (o))

IF-KL : KL(dm1 ||dm1m2 |m1)

IF-JS : JS(dm1 ||dm1m2 |m1)

4 Experiments

We worked with two datasets put forwards by
Pickering and Traxler in Pickering and Traxler
(1998). Dataset 1 has GP sentences with com-
plement clause ambiguities. An example is the
following:

Dataset 1. (i) GP. The dog catcher wor-
ried the terrier which fell wouldn’t fit
into the box.

Dataset 2 has GP sentences with subordinate-
clause ambiguities. An example is the following:
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Experiments
• Completions from GPT-2 and their syntactic structures from spaCy.


• Probabilities were obtained by grouping same structures and sampling 
from the GPT-2 model. 


• 4 Psycholinguistic Datasets: 


• 2 from Pickering and Traxler 1998 


• 2 from Sturt and Pickering 1999


• 48 Easy 


• 48 Hard
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m1  m1m2, suppose dm1m2 is the probability
distribution of the syntactic structures of m1m2.
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This restriction sums the probabilities of all com-
pletions of m1 into m1m2, where m1 retained the
same syntactic structure after being completed by
m2. Note that, in general:

dm1m2 |m1 6= dm1

This is because the reader may have to do some
reanalysis when going from m1 to m1m2.

3.3 Measures

Each stage of the human reading process is mod-
elled by a pair of succeeding sub-phrases of a sen-
tence, e.g. (m1,m1m2). The overall process of
reading a sentence is modelled by a sequence of
these pairs, i.e. {(mi,mi+1)j}ajn�1 where n is
the number of words or regions in a sentence. As
an example, here is the first two pairs of a sequence
that models the employee sentence:

(The, The employees)

(The employees, The employees understood)

As humans read an incoming sub-phrase m1 of
a sentence, they construct interpretations for it and
assign probabilities to their interpretations. When
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tations and probabilities are constructed, this time
for the sub-phrase m1m2. The reader expects that
the interpretations and probabilities of m1m2 to
be consistent with those of m1. If this is the case,
the sub-phrase m1m2 is comprehended and sen-
tence processing can carry on linearly. For critical
regions of GP sentences, however, this is not the
case and as a result sentence processing is halted.
This leads to a pause and possibly a reversal of the
order of reading thus higher reading times are ob-
served. Take our employee sentence and the pair of
sub-phrases therein (“The employees understood
the contract, The employees understood the con-
tract would change”). This pair sits at the critical
region of the garden path effect of the sentence.
The shared prefix “The employees understood the
contract” has a subject-verb-object structure in the
first sub-phrase, which is not consistent with the

subject-verb-subject structure after seeing “would
change” in the second sub-phrase.

In order to check whether the structure and prob-
abilities of the two succeeding sub-phrases m1 and
m1m2 of a sentence match, the larger sub-phrase
m1m2 is restricted to the smaller one m1 and the
degree of their divergence is estimated. This di-
vergence is what we refer to as the Incompatibility

Fraction IF.
A common choice for measuring divergence is

the Kullback–Leibler or KL-divergence. In our
case, we measure the KL-divergence between a
distribution dm1 to dm1m2|m1

, given below:

KL(dm1||dm1m2|m1
)=

X

o

dm1(o) log
dm1(o)

dm1m2|m1
(o)

KL is not always defined, in which case its symmet-
ric variant Jensen-Shannon divergence is used. In
the interest of space will not provide the formula.

Another choice is a metric similar to what is
known as Earth-Mover’s and measures the overlap
between two distributions by taking their min, i.e.P

o
min(dm1m2 |m1 (o), dm1(o)). The divergence

between the two distributions is then computed by
subtracting the overlap from 1. This leaves us with
the following formula:
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All three of these instantiations can be used, giving
rise to the following three measures:

IF-min : 1� ⌃omin(dm1(o), dm1m2 |m1 (o))

IF-KL : KL(dm1 ||dm1m2 |m1)

IF-JS : JS(dm1 ||dm1m2 |m1)

4 Experiments

We worked with two datasets put forwards by
Pickering and Traxler in Pickering and Traxler
(1998). Dataset 1 has GP sentences with com-
plement clause ambiguities. An example is the
following:

Dataset 1. (i) GP. The dog catcher wor-
ried the terrier which fell wouldn’t fit
into the box.

Dataset 2 has GP sentences with subordinate-
clause ambiguities. An example is the following:
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Equation ⇢ p-value
IF-min First Pass 0.0018⇥ IFmin � 0.0776 0.595 0.00032

IF-min Total 0.0006⇥ IFmin + 0.14387 0.448 0.00999
IF-JS First Pass 0.0016⇥ IFJS � 0.1333 0.568 0.00068

IF-JS Total 0.00053⇥ IFJS + 0.0633 0.4231 0.01580
IF-KL First Pass 0.0066⇥ IFKL � 0.4238 0.445 0.0106

IF-KLTotal 0.0021⇥ IFKL + 0.4022 0.326 0.06773
SP First Pass 0.7361⇥ SP + 268.8467 0.356 0.045

SP Total 2.1326⇥ SP + 441.9445 0.459 0.008

Table 1: Regression Equations with ⇢’s and their p-values.

Dataset 2. (i) GP. After the judge de-
cided the verdict of the trial caught the
old man’s attention.

Each dataset has 24 sets of four sentences: (i)
a plausible main sentence with a GP effect, and
(ii) its disambiguated control, (iii) an implausible
variant of the main sentence, and (iv) its disam-
biguated control. See below for examples of the
disambiguated controls of Dataset 1. (i) GP and
Dataset 2. (i) GP:

Dataset 1. (ii) DisAmb. The dog catcher
worried that the terrier which fell
wouldn’t fit into the box.
Dataset 2. (ii) DisAmb. After the judge
decided, the verdict of the trial caught
the old man’s attention.

The disambiguated controls of dataset 1 are ob-
tained by adding a complementiser, such as ’that’ to
the garden path sentences. The disambiguated con-
trols of dataset 2 are obtained by adding a comma.
Sentences of dataset 1 are also known are as NP/S.
They are an example of easy GP. Sentences of
dataset 2 are known as NP/Z and are an example
of hard GP.

The GP effect should occur after the second verb
is encountered which we will refer to as the critical

region, for example in “wouldn’t fit in the box”
in Dataset 1. (i) GP and in “caught the old man’s
attention” in Dataset 2. (i) GP.

Our hypothesis is that in either dataset, the read-
ing times (both first-pass reading times and total
reading times) of (i) sentences are longer than (ii)
sentences. This is since the (ii) sentences are the
disambiguated controls with no GP whereas the
(i) sentences each contain a GP. A GP effect is
computed by subtracting the reading time of (ii)
sentences from the reading time of (i) sentences

over the critical region. We expect that this effect is
higher in Dataset 2 (which has hard GP sentences)
than in Dataset 1 (which has easy GP sentences).

Items (iii) and (iv) differ from (i) and (ii) accord-
ing to the plausibility of the sub-phrases preceding
their critical regions. Here are examples of the
implausible variants of the sentences from both
datasets with their disambiguated controls:

Dataset 1. (iii) GP. The dog catcher
worried the book which fell wouldn’t fit
into the box.
Dataset 1. (iv) DisAmb. The dog
catcher worried that the book which fell
wouldn’t fit into the box.

Dataset 2. (iii) GP. After the judge
packed the verdict of the trial caught the
old man’s attention.
Dataset 2. (iv) DisAmb. After the judge
packed, the verdict of the trial caught the
old man’s attention.

The difference in plausibility has an impact on
the magnitude of the GP effect. Here, we have two
hypotheses: first that the garden path effects of the
these, e.g. (iii), in either Dataset 1 or 2, are shorter
than the ones without them, e.g. (i), and second
that, the total reading times of implausible sen-
tences are longer when the implausibility occurs,
e.g. in “the book which fell” in Dataset 1. (iii). GP
or “the verdict of the trial” in Dataset 2. (iii) GP;
we will refer to this region as the plausibility region.
The reason for hypothesis 1 is that the implausi-
bility is designed to diminish the misanalysis and
lead to a smaller GP effects. Indeed, it was shown
in Pickering and Traxler (1998) that GP sentence
with implausible prefixes exhibit a smaller effect as
compared to plausible ones, since the reader will
be less inclined to “take the garden path”. The
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Table 1: Regression Equations with ⇢’s and their p-values.

Dataset 2. (i) GP. After the judge de-
cided the verdict of the trial caught the
old man’s attention.

Each dataset has 24 sets of four sentences: (i)
a plausible main sentence with a GP effect, and
(ii) its disambiguated control, (iii) an implausible
variant of the main sentence, and (iv) its disam-
biguated control. See below for examples of the
disambiguated controls of Dataset 1. (i) GP and
Dataset 2. (i) GP:

Dataset 1. (ii) DisAmb. The dog catcher
worried that the terrier which fell
wouldn’t fit into the box.
Dataset 2. (ii) DisAmb. After the judge
decided, the verdict of the trial caught
the old man’s attention.

The disambiguated controls of dataset 1 are ob-
tained by adding a complementiser, such as ’that’ to
the garden path sentences. The disambiguated con-
trols of dataset 2 are obtained by adding a comma.
Sentences of dataset 1 are also known are as NP/S.
They are an example of easy GP. Sentences of
dataset 2 are known as NP/Z and are an example
of hard GP.

The GP effect should occur after the second verb
is encountered which we will refer to as the critical

region, for example in “wouldn’t fit in the box”
in Dataset 1. (i) GP and in “caught the old man’s
attention” in Dataset 2. (i) GP.

Our hypothesis is that in either dataset, the read-
ing times (both first-pass reading times and total
reading times) of (i) sentences are longer than (ii)
sentences. This is since the (ii) sentences are the
disambiguated controls with no GP whereas the
(i) sentences each contain a GP. A GP effect is
computed by subtracting the reading time of (ii)
sentences from the reading time of (i) sentences

over the critical region. We expect that this effect is
higher in Dataset 2 (which has hard GP sentences)
than in Dataset 1 (which has easy GP sentences).

Items (iii) and (iv) differ from (i) and (ii) accord-
ing to the plausibility of the sub-phrases preceding
their critical regions. Here are examples of the
implausible variants of the sentences from both
datasets with their disambiguated controls:

Dataset 1. (iii) GP. The dog catcher
worried the book which fell wouldn’t fit
into the box.
Dataset 1. (iv) DisAmb. The dog
catcher worried that the book which fell
wouldn’t fit into the box.

Dataset 2. (iii) GP. After the judge
packed the verdict of the trial caught the
old man’s attention.
Dataset 2. (iv) DisAmb. After the judge
packed, the verdict of the trial caught the
old man’s attention.

The difference in plausibility has an impact on
the magnitude of the GP effect. Here, we have two
hypotheses: first that the garden path effects of the
these, e.g. (iii), in either Dataset 1 or 2, are shorter
than the ones without them, e.g. (i), and second
that, the total reading times of implausible sen-
tences are longer when the implausibility occurs,
e.g. in “the book which fell” in Dataset 1. (iii). GP
or “the verdict of the trial” in Dataset 2. (iii) GP;
we will refer to this region as the plausibility region.
The reason for hypothesis 1 is that the implausi-
bility is designed to diminish the misanalysis and
lead to a smaller GP effects. Indeed, it was shown
in Pickering and Traxler (1998) that GP sentence
with implausible prefixes exhibit a smaller effect as
compared to plausible ones, since the reader will
be less inclined to “take the garden path”. The
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Results
Pickering and Traxler

Equation ⇢ p-value
IF-min 0.0018⇥ IFmin � 0.0776 0.595 0.00032
IF-JS 0.0016⇥ IFJS � 0.1333 0.568 0.00068
IF-KL 0.0066⇥ IFKL � 0.4238 0.445 0.0106

SP 0.7361⇥ SP + 268.8467 0.356 0.045

Table 5: Regression Equations with ⇢’s and their p-values.

All Hard (NP/Z) GP Easy (NP/S) GP

Method GPE SE GPE SE GPE SE
IF-min 39.47 0.17 53.94 2.72 24.99 2.74
IF-JS 39.69 0.43 52.22 2.40 27.16 2.31

IF-KL 52.81 3.64 62.20 4 43.42 3.30
Surprisal 0.35 0.16 0.72 0.32 -0.02 0.05

Human First Pass 39.5 46.5 32.5
Human Total 185.5 215.5 155.5

Table 6: Garden Path Effects (GPE) and their Standard Errors (SE). All numbers are in milliseconds.
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Results
Sturt and Pickering 1999

IFmin IFJS SP Human
NP/S 96.07± 79 163.60± 119.29 2.05± 42 87
NP/Z 137.48± 76 211.97± 99 �27.69± 51 400
p-value 0.0396 0.0873 0.0148

Table 3: Predicted garden-path effect for NP/S and NP/Z sentences.

32 ambiguous NP/Z garden path sentences. Each238

sentence is paired with an unambiguous control,239

leading to a total of 128 sentences. The sentences240

are divided into 4 regions, see Table 1. The dataset241

contains self-paced reading times for each region.242

We take participants’ reading times to reflect pro-243

cessing difficulty and examine the extent to which244

IFmin and IFJS correlate with human reading245

times by training a regression model. The regres-246

sion coefficients are then used to (i) predict reading247

times and (ii) compute the garden path effect for248

NP/S vs NP/Z sentences. The results are compared249

with the same effects in humans. The tests are250

repeated with surprisal and the results compared.251

4 Results and Analysis252

The regression equations between our IF measures253

and human reading times (RT ) are given below:254

RTIFmeasure(region)
min 333.85

P
w2region IFmin(w) + 702.81 ms

JS 455.82
P

w2region IFJS(w) + 720.09ms

SP 2.23
P

w2region SP (w) + 178.68 ms

255

They indicate strong positive correlation between256

both IF’s and human reading times, see below:257

258
IFmin IFJS SP

⇢ 0.8744 0.8805 0.5536
p-value 1.99⇥ 10�4 1.57⇥ 10�4 0.062

259

The Pearson’s ⇢ coefficients are high and their as-260

sociated p-values show statistical significance of261

the correlation. In contrast, surprisal SP has a262

lower coefficient and that was not statistically sig-263

nificant. By applying bootstrap resampling to mea-264

sure difference in correlation between two hypothe-265

ses (Koehn, 2004) we found that that the two IF’s266

significantly outperform SP (p-values < 10�140).267

Predicting the reading time We used the regres-268

sion equations to predict the reading times of the269

critical regions of the garden path sentences and270

their controls, see Table 2. Both IF measures pre-271

dicted the times that are very close to those in272

humans ( 117 and 183 vs 244 ms). In contrast,273

surprisal predicted times that were both very close 274

to each other (for garden path sentences and their 275

controls) and both only close to the human reading 276

times of the controls. The IF results were highly 277

significant, but SP was not 278

Distinguishing NP/S from NP/Z The IF mea- 279

sures were also able to distinguish between the 280

predicted garden-path effects for NP/S and NP/Z 281

sentences, see Table 3. A “garden path effect” is 282

the difference between reading times for garden- 283

path sentences and their controls. Here, IFJS pro- 284

vided a better difference than IFmin ( 48 ms in 285

contrast to 41 ms). This difference was, however 286

less than that for humans (313 ms). On the contrary, 287

surprisal predicted the wrong trend, i.e. a higher 288

reading time for NP/S than for NP/Z, leading to 289

a negative difference ( -25 ms). As the p-values 290

show, all these differences were produced with a 291

high confidence. 292

5 Conclusion and Future Work 293

We introduced a sheaf theoretic model and a corre- 294

sponding quantitative measure that combined the 295

syntactic structure of language with the probabil- 296

ity distribution of its statistical patterns. when 297

applied to garden path sentences and compared 298

to surprisal, our model correlated better with hu- 299

man behavioural data, could provide better predic- 300

tions of human reading times and distinguished be- 301

tween different types of sentences. It, however, was 302

slightly underestimating: the human garden path 303

effect was 313 ms and the model average 45.5 ms. 304

We conjecture this is due to the presence of other 305

linguistic features such as semantics and pragmat- 306

ics. Specific datasets have been designed to control 307

for these features, e.g. see (Pickering and Traxler, 308

1998) and there exists previous work on related 309

computational models, e.g. see (Padó et al., 2009). 310

The compositional nature of sheaves allows us to 311

incorporate other features in the model, via pair- 312

ing or the composition of their corresponding map. 313

Less is known when it comes to the combination of 314

their distance measures. Extending the model and 315

further evaluations constitutes work in progress. 316
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Future Work
• Summary: Combining Psycholinguistics theories  with  LLMs makes them more natural. 


• Better Syntax: incremental probabilities of parsers rather than the extravaganza!


• Beyond syntax: a theory of interpretation/comprehension, e.g. adding semantics and pragmatics


• SP vs IF, SP with IF


• Large NLP datasets: Huang et. al 2023.


• More reliable human reading data: FMRI, OVP


• Reanalysis using causal orders or Bayesian models (QPL, 2022) 


• Connections to QM (Kin Ian Lo QTM 2024, QPL 2023, Tilen Stokin-Lambik)


