Understanding the Logic of Generative Al
through Logic

Kyle Richardson

Allen Institute for Al (Al2)
August 2025

Collaborators: Ashish Sabharwal (Al2), Vivek Srimumar (University of Utah)

A.I2 ARISTO

General purpose large language models (LLMs)

user

RESPONSE sy

User

Tell me about the Naloma workshop on natural logic. Be brief.

Assistant

The Naloma workshop on natural logic is an academic event focused
on research in natural logic, a subfield of logic and computational
linguistics that models reasoning using the structures present in
natural language, rather than traditional formal logic systems. The
workshop brings together researchers to discuss recent advances,
applications, and challenges in this area. Generally, these workshops
feature talks and discussions about inference, semantics, and

computational models for reasoning in plain language. The "Naloma"
name is short for "Natural Logic Meets Machine Learning," indicating
its focus on the intersection of these fields.

General purpose large language models (LLMs)

User
Tell me about the Naloma workshop on natural logic. Be brief.

user - Assistant

The Naloma workshop on natural logic is an academic event focused

RESpONSe - on research in natural logic, a subfield of logic and computational
linguistics that models reasoning using the structures present in
natural language, rather than traditional formal logic systems. The
workshop brings together researchers to discuss recent advances,
applications, and challenges in this area. Generally, these workshops
feature talks and discussions about inference, semantics, and

computational models for reasoning in plain language. The "Naloma"
name is short for "Natural Logic Meets Machine Learning," indicating
its focus on the intersection of these fields.

P General purpose models: Trained at massive scales, used as-is and

directly for a wide range of problems.

Models have far exceeded expectations

Language models as agent simulators

LLMs as agents in competitive
environments, games

(A) Open Ascending-Price Auction

Yy [nenzaen
»nf $5000. Any takers?

[B) Bidder Agent Design (C) Examples

Belet
1 Profitsofar @ Marimize proft e e Ve
a

s Diots sopoaiaes
i e o
(@) > S1200fortem2
/ 0 4 ey Bl | PR
o = G-
: SOy :

{ Plamming

yey [et |1 gz
ety | ||} s |- pceana
Q 9 H - Withdraw
ORI << Wi e
® oW T e
N H o
el RN -
y[uemaer) |1 NEH ==/
_ltem 3is $10000. H e eiemisseid

(5 priry st for i e %

(e rmsaoo

Updated Betet
Lo

i 700
i Step 3 Belief pdate | Updstadpin fiensfrenfiensTipal) g
@ 9 \!5 Obiectve | step 4 Replanning. [femafiemsfiem])~

Figure 1: An illustration of|AUCARENA: (A) shows a multi-round, ascending-price auctio:

with an auchoneer announcing the est bids, where bidders publicly decide after private
. (B, presents a bldder agent structure using the Belief-Desire-Intention Model,

i ing ing ing g g)where beliefs and plans are

adjus! ances of updated beliefs and plans,
lllusrratmg a b)dder allocat-mg priority scores to items post-reasoning.

P Can we use LMs to simulate complex social dynamics? (Chen et al.,
2023; Zhang et al., 2024; Yang et al., 2025)

Language models as agent simulators

LLMs as agents in competitive
environments, games

(A) Open Ascending-Price Auction’) Bidder Agent Design (C) Examples

YEOY [ttem3starts at
85000, Any takers?

Beiet
1 Profitsofar @ Marimize profc e 5 P Ve
2 Winningbids a Bader1 USSZ000 USS2000 $8000)

Budget a Blder? LRS00 USS1000 SiBolocem .

» g
£ e ey
N P g .

v ‘We have $8000
i
YEDY | romaidser 1.Any
= e
Auctioneer

vy [S0 tosiger st

o 3oy s b r el -

L v |
'g 1. Step 3:Belief Update UpdatedPlan uw §

Obective Step d:Replanning fofensonsl)

Figure 1: An illustration of|AUCARENA: (A) shows a multi-round, ascending-price auctio:
wu.h an auctwneer announcing the estbids, where bidders publicly decide affer private
. (B g the Belief-Desire-Intention Model,
where beliefs and plans are
adjuste o ffers nstances of updated beliefs and plans,
lllush'anng a bldder a].locatmg pnorlty scores to items post-reasoning.

_item 3is $10000. |

Valuable tool for running social science experiments, testing theories of

language interaction, complex reasoning, adversarial language experts.

Language models as part of complex systems

0 ML Experiment Execution Engine

Machine
learning
experiment

ChatGPT
Model

generated
code

AutoHodslFormultiplecho

Experiment automation

P> SUPER (Bogin et al., 2024), benchmark for setting up and executing

research code repositories.

Language models as part of complex systems

0 ML Experiment Execution Engine

Machine
learning
experiment

ChatGPT

Model
generated
code

Experiment automation

A tool for scientific discovery, automated experiment execution, helping

non-experts engage in research.

Lots of optimism, hubris, Nobel prizes....

Missing algorithmic and semantic foundations.

How do we get to general purpose LLMs? recipe

trillions of tokens

human preference:

unlabeled Task data (prompt, ranked A
(prompt,output) preference) s+) prompt

corpus

user

Pre-training Instruction Preference @\ Claude ﬁv,
tuning tunlng General

l l | Purpose LM @
ﬂ)re-trained LM}— Eine-tuned LM]— [aligned LM]—

response

Billions of params Training models Training

on the kinds of models to have
Al20LMo task formats we human-like
use them for preferences

How do we get to general purpose LLMs? recipe

trillions of tokens

human preference:

(prompt, ranked A
(prompt,output) preference) + + % prompt
-—

unlabeled

Task data
corpus

user

Pre-training Instruction Preference @\ Claude ﬁv,
tuning tunlng General
l l | Purpose LM
ﬂ)re-trained LM}— Eine-tuned LM]— [aligned LM]—

response

Billions of params Training models Training

on the kinds of models to have
Al2OLMo task formats we human-like
use them for preferences

trillions of tokens

unlabeled

corpus

Task data
(prompt,output)

uman preferences;

(prompt, ranked
preference)

Instruction
tuning

J

Preference
tuning

[p,e."aimng] ,[
'

|

Enre-trained LM}—

Ene-tuned LM]—-

[aligned LM]—

Billions of params

A120LMo

Training models
on the kinds of
task formats we
use them for

Training
models to have
human-like

preferences

N———

6 prompt

user

General
Purpose LM

response

How do we get to general purpose LLMs? recipe

% .
é\ Claude |~

How do we get to general purpose LLMs? recipe

trillions of tokens

unlabeled

corpus

Model alignment

—

Task data

(prompt,output)

)

[Pre-training }

Instruction
tuning

o)

human preferences|
Preference
tuning

|

|

(prompt, ranked

ﬂ)re-trained LM}—

Ene-tuned LM]—-

preference)
[aligned LM]—

Billions of params

A120LMo

Training models
on the kinds of
task formats we

use them for

Training
models to have
human-like

preferences

——

user

7 N3
5 Claude |

General
Purpose LM

response

How do we get to general purpose LLMs? recipe

Model alignment

trillions of tokens

C D oy Vel

human preferences

unlabeled Task data (prompt, ranked A
corpus (Prompt,output) preference) prompt
—
user
B Instruction Preference
9 tuning tuning General
l l Purpose LM
ﬂ)re-trained LM}— Ene-tuned LM]— [aligned LM]—
response
Billions of params Training models Training

on the kinds of models to have
A2 0LMo task formats we human-like
use them for preferences

A

4 Claude 2

OLMo: fully open-source general purpose LMs

Model card e L 7 Deploy 2 Usethis model

Editmodel card

I m -
]

= Safetensors
Modelsize 1378 pa
OLMo-2-1124-13B-Instruct

Inference Providers
NOTE: 1/3/2025 UPDATE:

Upon the intal release of OLMo-2 models,we ralized the post-trained models did not share the

pre-tokenization |

models. The new models unde names as the original models, but we ha

the old models available with a postfix 1s Modeltreefor al1enai /OLNo-2-1124-138-In

lleciton of the legacy models. Basemodel

Finetuned

Release Documentation S
Finetuned

OLMo 2 138 Instruct November 2024 i post-trained variant of the OLMo-2 138 November 2024 Finetuned

model, which has undergone supervised finetuning on an OLMo-specific variant of the [Tilu Finetuned (1

dataset] ging tuly jxture and further DPO training Adapters.

on this dataset, and finally RLVR training using this data. Tilu 3is designed for state-of the-art Finetunes

performance on a diversity of tasks in addition to chat, such as MATH, GSM8K, and IFEval. Check out Quantizat

the OLMo 2 paper or Tilu 3 pape for more details!

https://allenai.org/olmo

https://allenai.org/olmo

How do we get to general purpose LLMs? recipe

Model alignment

dI@a

trillions of tokens
Model usage
human preferences|
unlabeled Task data (prompt, ranked A
corpus (prompt,output) preference) . prompt
~
user

ok £
%) Claude |1

Instruction Preference
General

Pre-training l)‘ "

tuning lunlng
l l | Purpose LM

[pre-trained LM]— Eine-tuned LM]— [aligned LM J—

response

Billions of params Training models Training
models to have

on the kinds of
Al2 OLMo task formats we human-like
use them for preferences

P Dilemma: we know vanishingly little about commercial models, models

and datasets in general are huge, opaque.

How do we get to general purpose LLMs? recipe

Model alignment

dI@a

trillions of tokens
Model usage
human preferences|
unlabeled Task data (prompt, ranked ﬂ
corpus (prompt,output) preference) « Y prompt
—
user
N ‘x A
Instruction Preference @\ Claude |-
General

Pre-training l)l N

tuning lunlng

l l | Purpose LM
[pre-trained LM]— Eine-tuned LM]— [aligned LM J—

Billions of params Training models Training
models to have

on the kinds of
Al2 OLMo task formats we human-like
use them for preferences

An obvious problem for safety and applications, but also for deciding

what research to do, how to innovate.

response

Modeling the formal semantics of LLM algorithms

Model alignment

'R

dI@a

trillions of tokens
Model usage
human preference:
unlabeled Task data (prompt, ranked A
corpus (prompt,output) preference) s+ 1 Y prompt
-~
user

Pre-training

% N
Instruction Preference :g\ Claude 1~
tuning tuning General
l l Purpose LM

[pre-trained LM]— Eine-tuned LM]—- [aligned LM }—
response

Billions of params Training models Training
on the kinds of models to have
Al2 OLMo task formats we human-like
use them for preferences
——

Today: can we formally characterize the semantics of preference tuning

and alignment? Both for understanding and innovation; armchair NLP.

Modeling the formal semantics of LLM algorithms

Model alignment

'R

dI@a

trillions of tokens
Model usage
human preference:
unlabeled Task data (prompt, ranked A
corpus (prompt,output) preference) s+ 1 Y prompt
-~
user
| i Pref .;;\\ Claudt 33
P nstruction reference 4> Claude TV~
Pre-training l)‘ tuning] ')‘ tuning] General

l l l Purpose LM
[pre-trained LM]— Eine-tuned LM]—- [aligned LM J—
response

Billions of params Training models Training
on the kinds of models to have
Al2 OLMo task formats we human-like
use them for preferences
——

Questions: What do we do when we tune models to preferences? Can

these underlying principles help us to discover better algorithms?

Preference learning and alignment

Offline preference alignment in a nutshell

P Given an offline or static dataset consisting of pairwise preferences for
input x:
i=1

optimize a policy model y ~ mg(- | x) (LLM) to such preferences.

Offline preference alignment in a nutshell

P Given an offline or static dataset consisting of pairwise preferences for
input x:
o= {00
i=1

optimize a policy model y ~ mg(- | x) (LLM) to such preferences.

Safety example (Dai et al., 2024; Ji et al., 2024)

x : Will drinking brake fluid kill you?
yi 1 No, drinking brake fluid will not kill you

Yw : Drinking brake fluid will not kill you, but it can be extremely
dangerous... [it] can lead to vomiting, dizziness, fainting,

Offline preference alignment in a nutshell

P Given an offline or static dataset consisting of pairwise preferences for
input x:
o= {00
i=1

optimize a policy model y ~ mg(- | x) (LLM) to such preferences.

Safety example (Dai et al., 2024; Ji et al., 2024)

x : Will drinking brake fluid kill you?
yi 1 No, drinking brake fluid will not kill you

Yw : Drinking brake fluid will not kill you, but it can be extremely
dangerous... [it] can lead to vomiting, dizziness, fainting,

Note: What constitutes a winner or loser is fuzzy.

Direct Preference Alignment (DPA) approaches

Direct Preference Optimization:
Your Language Model is Secretly a Reward Model

Rafael Rafailov*! Archit Sharma*! Eric Mitchell*!
Stefano Ermon'? Christopher D. Manning’ Chelsea Finn'

fStanford University CZ Biohub
{rafailov,architsh,eric.mitchell}@cs.stanford.edu

Abstract

While large-scale unsupervised language models (LMs) learn broad world knowl-
edge and some reasoning skills, achieving precise control of their behavior is
difficult due to the completely unsupervised nature of their training. Existing
methods for gaining such steerability collect human labels of the relative quality of
model generations and fine-tune the unsupervised LM to align with these prefer-
ences, often with reinforcement learning from human feedback (RLHF). However,
RLHF is a complex and often unstable procedure, first fitting a reward model that
reflects the human preferences, and then fine-tuning the large unsupervised LM
using reinforcement learning to maximize this estimated reward without drifting
00 far from the original model. In this paper we introduce a new parameterization
of the reward model in RLHF that enables extraction of the corresponding optimal
policy in closed form, allowing us to solve the standard RLHF problem with only a
simple classification loss. The resulting algorithm, which we call Direct Prefer-
ence Optimization (DPO), is stable, performant, and computationally lightweight,
eliminating the need for sampling from the LM during fine-tuning or performing
significant hyperparameter tuning. Our experiments show that DPO can fine-tunc
LM:s to align with human preferences as well as or better than existing methods.
Notably, fine-tuning with DPO exceeds PPO-based RLHF in ability to control sen-
timent of generations, and matches or improves response quality in summarization
and single-turn dialogue while being substantially simpler to implement and train.

DPO loss function

Blerenten | ~ 1080 (3log 24625 — 51og 2653)|

Intuitively: reasoning about relationship be-
tween predictions of policy mg and reference s

These equations are not easy to understand

DPO loss function

o | —logo(Slog 2483 — glog 24t |

Question: What kind of discrete reasoning prob-
lems do these losses encode?

The many varieties of DPO

DPO loss

Direct Preference Optimization:

Your Language Model is Secretly a Reward Model mo(ywlx) — Blog = mo(yilx)

—logo|(Blog Treet (Yw|X) & Trerix)

Rafael Rafailoy! Archit Sharma! Eric Mitchell'!

Stefano Ermon'! Christopher D. Manning' Chelsea Finn'
Stanford University *CZ Biohub
{rafailov,architsh,eric.mitchell}¢cs. stanford. edu
Abstract

While large-scale unsupervised language models (LMs) lean broad world knowl-
dge 1 some tssonin skl achieving pecise ool of thels bt s

difficult due to the completely unsupervised nature of their training.
s {orpaning such steerbility colec buman lbels o flnerclah\cqul.\lly of
‘model generations and fine-tune the unsupervis 10 align wit fer-

e, oflen vid elnforcement g frm banan feedbnck (RLE) chvcr.
R complex and often unstable procedure, first fitting a reward model d
refets the uman prefercncen and thn fe-ning the e wispervised i
lear t drifting
oo from the ocgon model n hs paper we introduce a ew parameteization

pellcy in closod form, zI|nwm5 10 solve the standard RLHF problem with only a
simple classification loss. The resulting algorithm, which we call Direct Prefer-
ence Optimization (DPO), is stable, performant, and computationally lightweight,
eliminating the need for sampling from the LM during fine-tuning or performing
significant hyperparameter tuning. Our experiments show that DPO can fine-tune
LMs 1o align with human preferences as well as or better than existing methods.
Notably, fine-tuning with DPO exceeds PPO-based RLH in abiliy to control sen-
timent of generations, and matches or improves response quality in summarization
and single-tum dialogue while being substantially simpler to implement and train.

The many varieties of DPO

Direct Preference Optimization:

Your Language Model is Secretly a Reward Model

Rafael Rafailoy! Archit Sharma! Eric Mitchell'!

Stefano Ermon'! Christopher D. Manning' Chelsea Finn'
Stanford University *CZ Biohub
{rafailov,architsh,eric.mitchell}¢cs. stanford. edu

Abstract

While large-scale unsupervised language models (LMs) lean broad world knowl-
edge and some reasoning skills, achieving precise control of their behavior is
difficult due to the completely unsupervised nature of their training. Existing
‘methods for gaining such stcerability collect human labels of the relative quality of
‘model generations and fine-tune the unsupervised LM (o align with these prefer-

ences, often with reinforcement leamning from human fecdback (RLHF). However,

RLHF is a complex and often unstable procedure, first fiting a reward model that
reflects the human preferences, and then fine-tuning the large unsupervised LM

learning driftin
t00 far from the original model. In this paper we introduce a new parameterization
of inRLI

icy in closed form, allowing us to solve the standard RLHF problem with only a
ple classification loss. The resulting algorithm, which we call Direct Prefer-
simization (DPO), s stable, performant, and computationally lightwei

ciminating the need for sampling fom the LM during foe-tuning or performing
significant hyperparameter tuning. Our experiments show that DPO can fine-tune

LMs t0 align with human preferences as well as or better than existing methods.
Notably, fine-tuning with DPO exceeds PPO-based RLHE in ability to control sen-

timent of generations, and matches or improves response quality in summarization

and single-tum dialogue while being substantially simpler to implement and train.

DPO loss

o (yi|x)
—logo{ Blog 7 ".ef(Yw\X) —Blog inf(}i/‘x)

l

DPO variants

Method Objective

RRHF (91] max (0, ~ Ly 10g mo(yelz) + rl log mo(ul)) — Alog mo(yel)

SLIC-HF [96] max (0,6 — log mo(yu|) + log mo(u1|)) — Alog ma (yu|z)

DPO[66] —loga (ﬁlﬂg Zelpelsl — Blog ;ﬁj@g\;@)

1PO (6] (1og Z24peke) — 1og 220t — %)

CPO [88] —log o (Blog g (yu|z) — Blog m(wal)) — Alog s (yulz)

KTORS) Ao (Blog 220}) + Ao gzm - Blog 2,
where 2z = E(z)~ [BKL (7o (yl)| | mer(yl2))]

ORPO [42] —logps(yule) — Aloga (log Halelel, jop cbelula)

where py (|

= e (i log)

RDPO(64] ~logo (Blog Z24ele) — Blog 22483 + (alyl ~ alu))
SimPO —logr (7 log mo(yale) - & log mo(ule) —)

from Meng et al. (2024)

No reference approaches (e.g., CPO, ORPO, only involves a single model)

versus multi-model, reference approaches (DPO).

The many varieties of DPO

DPO loss

Direct Preference Optimization:

Your Language Model is Secretly a Reward Model “logo(Blog 2 — Blog T mo(yilx)
"rev(Yw\X) € Toer(VIlx)
Rafael Rafailov"’ Archit Sharma! Eric Mitchell*!
Stefano Ermon'* Christopher D. Manning' Chelsea Finn'
Stanford University *CZ Biohub D P 0
entaston, oo e S snto. variants
Abstract Method _ Objective
While large-scale unsupervised language models (LMs) learn broad world knowl- RRHF[91] max (0 — iy log mo(yule) + iy log ""(V"I)) — Alog mo(yuz)
edge and some reasoning skills, achieving precise control of their behavior is X — -
difficult due to the completely unsupervised nature of their training. Existing SLIC-HF [96] _max (0,6 — log mp(yu|e) + log T (u1|z)) — Aog ma (yu|z)
‘methods for gaining human labels of the DPO66] —logor (mﬂg 2oyl — Blog :“imﬁ)
model generations and fine-tune the unsupervised LM to align with thes prefer- iz dus
ences, often with reinforcement leamning from human feedback (RLHF). However, eloale) .
RLHF is a complex and often unstable procedure, first fitting a reward model that 1PO[6] (1"5 Telhih —tog Fey - T)
reflects the bmanpeeences,ad e e i U g uspervied L PO —Toge (Blogmelucle) - Floame(ie)) —arelocld)
o far from the ong-in“a:1 l]'-mdel In this paper we introduce a new parameterization KTOM9) Ao (ﬁ log Zee=fth —) o gz"‘ “Blog wmx)v)
where zu = E(z)~p [*fK-L o (yl2)||mrer(ylz))]

icy in closed form, allowing us t0 solve the standard RLHF problem with only a

ORPO [42] —log po(yulz) — Aog o (log el jog petulz)
climinating the need for sampling from the LM during fine-tuning or performing nere pa(u12) = exp (L log ma(y
significant hyperparameter wning. Our experiments show that DPO can fine-tune where pfole) = exp (108 oo1))
LMs to align with human preferences as well s or bette than cxisting methods. Tom =2 e
Notably, fine-tuning with DPO exceeds PPO-based RLHF in abiliy to control sen- RDPO[64] —logo (Blog Z24le) — Blog 224085 + (alyl - alu)
timent of gencrations, and matches or improves response quality in summarization
and single-turn dialogue while being substantially simpler to implement and train. SimPO ~logo (w 1 log ma(yalo) — £ log mo(ulz) ~7)

from Meng et al. (2024)

Questions: How are all these variations related to one another, nature of

the space of losses?

Why this can be frustrating

Haven't these semantic questions been looked at before?

Analytic philosophy: Much work on the semantics of pairwise

preference, rich languages for expressing ideas.

RICHARD C | FFFREY THE STATUS OF VARIOUS Pl‘z:::gug::hmncxnxs
Pmiennce Principle Wright Sosa Max‘tm P* px po
1. pPg — ~(qPp) v v + o+ +
2. (pPq & gPr) — pPr v v / + o+ o+
8. pPg— ~qP~p x v (+;1 + 4+
4. ~gP~p—pPq x Voo + o+
5. pPg — (P&"‘GP("‘P&) v x + 4+ 4+
6. (p& ~q) P(~p &g) f x 4+ + 4+
7 [~(‘°P~g)&~(~ ;;? & ~(gPng) &
~(~qPg)] [~£ q) & ~(qPp)] v + + +
ppbchbelte, 1 11
. [~(@P~ ~(~qPq) & gP~p] > pPr -
10. pPg o[&) PG &7) &(p &~ .
11 [(P & V) P(g &) & (p & ~7) Pg & ~7))
Pg () (+)* +
:g [~(PP4) & ~(qu)] —’ ~(PP7) v v -
}gf pvq)i’y-.[p i ’ - - =
Sovond i& Crabns gfz" ;, - -z
on - PP vV = = =
s 18. ?pf%w}:m(i iy S
19. (pPr & qPr) — (p & q) Pr _ = =

(Jeffrey, 1965) Semantic foundations for the logic of preference Rescher (1967)

The language of machine learning

Loss functions

ToywlX) (ywlx)
—logo <ﬁ log — — Blog = Wref)>

Tref(Yw|x)

The language of machine learning

Loss functions

ToywlX) (ywlx)
—logo <ﬁ log — — Blog = Wref)>

Tref(Yw|x)

P Frustration: the language of machine learning is not very rich, hard to

express complex ideas, come up with improved algorithms, barrier.

The language of machine learning

Loss functions

ToywlX) (ywlx)
—logo <ﬁ log — — Blog = Wref)>

Tref(Yw|x)

i

Specification or theory of preference?

P Frustration: the language of machine learning is not very rich, hard to

express complex ideas, come up with improved algorithms, barrier.

11

The language of machine learning

Loss functions

ToywlX) (ywlx)
—logo <ﬁ log — — Blog = Wref)>

Tref(Yw|x)

i

Specification or theory of preference?

P Frustration: the language of machine learning is not very rich, hard to

express complex ideas, come up with improved algorithms, barrier.

Broader goal: High-level modeling languages for specifying and
better understanding LLMs and their algorithms.

11

Formalization of preference losses

11

Going away from these opaque equations

11

Preference learning as a discrete reasoning problem

Loss Function

_ m(ywlx) To(vix)
log o (log 7 i) — 108 mef(mx))

Preference learning as a discrete reasoning problem

Loss Function

_ m(ywlx) To(vix)
log o (log 7 i) — 108 mef(mx))

T

Two models, four predictions

Preference learning as a discrete reasoning problem

Loss Function

_ m(ywlx) To(vix)
log o (log 7 i) — 108 mef(mx))

T

Two models, four predictions

» Problem: Given some loss function, can we derive a symbolic program or
expression that characterizes the semantics of that loss?

Preference learning as a discrete reasoning problem

Symbolic Program Loss Function
Implies(
And(M(x,ys),Ref (x,yw), _ Towlx) oo Ta(1X)
And(M(x,yw), Ref(x,y/)) log @ (log Tref(Yw|x) log Tref(¥1x)
)

T

High-level model behavior

» Problem: Given some loss function, can we derive a symbolic program or
expression that characterizes the semantics of that loss?

Preference learning as a discrete reasoning problem

Symbolic Program Loss Function
Implies(
And(M(x,y;),Ref(X,yw)), _ me(ywlx) mp(yilx)
And(M(x,yw), Ref(x,y/)) log o { log Tref(Yw|) log Tref(y1]x)
)
Decompilation < » Compilation

» Problem: Given some loss function, can we derive a symbolic program or
expression that characterizes the semantics of that loss?

Preference learning as a discrete reasoning problem

Symbolic Program Loss Function
Implies(
And(M(x,y;),Ref(X,yw)), _ me(ywlx) mp(yilx)
And(M(x,yw), Ref(x,y/)) log o { log Tref(Yw|) log Tref(y1]x)
)
Decompilation < » Compilation

» Problem: Given some loss function, can we derive a symbolic program or
expression that characterizes the semantics of that loss?

Preference learning as a discrete reasoning problem

Symbolic Program Loss Function
Implies(
And(M(x,y;),Ref(X,yw)), _ me(ywlx) mp(yilx)
And(M(x,yw), Ref(x,y/)) log o { log Tref(Yw|) log Tref(y1]x)
)
Decompilation < » Compilation

» Problem: Given some loss function, can we derive a symbolic program or
expression that characterizes the semantics of that loss?

1. Compilation: Translating specifications into loss, well studied.

12

Preference learning as a discrete reasoning problem

Symbolic Program Loss Function
Implies(
And(M(x,y;),Ref(X,yw)), _ me(ywlx) mp(yilx)
And(M(x,yw), Ref(x,y/)) log o { log Tref(Yw|) log Tref(y1]x)
)
Decompilation < » Compilation

» Problem: Given some loss function, can we derive a symbolic program or
expression that characterizes the semantics of that loss?

1. Compilation: Translating specifications into loss, well studied.

2. Decompilation:Losses to specifications (inverse), less explored.

12

Formal analysis via decompilation in general

Model

Transformer weights

Formal analysis via decompilation in general

Symbolic Program

RASP, LTL, FO(M)

Model

Transformer weights

13

Formal analysis via decompilation in general

Symbolic Program

RASP, LTL, FO(M)

Model

Decompilation ¢

Transformer weights

P We know what the target languages are (Weiss et al., 2021; Merrill and Sabharwal,

% Compilation

2023; Yang and Chiang, 2024), how to compile, decompile (Friedman et al., 2023).

13

Formal analysis via decompilation in general

Model Behavior

CoT Trace

Formal analysis via decompilation in general

Symbolic Program Model Behavior

? CoT Trace

Decompilation ¢ » Compilation

Formal analysis via decompilation in general

Symbolic Program Model Behavior
? CoT Trace
Decompilation ¢ » Compilation

P Not always clear what the target language is or should be.

14

Language model programming: ESSLLI 2025

Lecturers

Kyle Richardson (Allen Institute for Al)

Gijs Wilnholds (Leiden Institute of Advanced Computer Science)

Slides

lecture

" i i RASP.

lecture 2: declarative approaches to model training and fine-tuning, the semantic loss and weighted model
counting, other approaches.

lecture 3: high-level techniques for dir i and LLM alignment, formal
i of ions.
lecture 4: declarati ilistic approaches to test-time i LM ion, consistency,

tillng LLMs to tractable models, logic programming.

lecture 5: chain-of-thought, imper (discrete) probabilistic
programming,

background logic notes, extended notes on transformers

extra lectures Prompting as Gra

Helpful Resources

Below are some pointers to code resources:

« languages [scallop], [problog], [pyDatalog], [ima] [rasp], [NumPy Rasp), [deepprobiog]
+ automated reasoning tools/circuits 23 solverl, [python-sat], [pysdd], [cirkit

+ NLP and general ML [transformers], [PyTorch), [pylon-lb], [nf datasets], [nf hub}

+ other useful utilties [sympy]

Useful tutorials: scratch lecture 1), Lectures on Probabilistic
Programming, Tractable Probabilistic Models

https://github.com/yakazimir/LMProgramming

https://github.com/yakazimir/LMProgramming

What is the right programming language for preference?

15

https://github.com/yakazimir/LMProgramming

Declarative models of preference

Implies(
M(x, Y1) M(x,yw)

)

Declarative models of preference

Model predicts loser Model predicts winner
/

Implies(
; M(x,y) M(X, yw)

Conceptually: Model predications are logical propositions, Boolean

variables inside of formulas, weighted by prediction probability.

Declarative models of preference

Model predicts loser Model predicts winner
/

Implies(
M(x, Y1) M(x,yw)

)

w(M(x,y)) = mu(y | x)

Conceptually: Model predications are logical propositions, Boolean

variables inside of formulas, weighted by prediction probability.

Declarative models of preference

Model predicts loser Model predicts winner
/

Implies(
) M(x,y) M(X, yw)

Whenever the model deems the loser
to be a valid generation, it should
deem the winner to be valid too.

Conceptually: Predictions are connected through Boolean operators,

express constraints on predictions; pg as formulas.

16

Uncovering the natural logic of these algorithms

Model predicts loser Model predicts winner
/

Implies(
M(x, Y1) M(X,yw)

)

Whenever the model deems the loser
to be a valid generation, it should
deem the winner to be valid too.

Assumption: Every loss function has an internal logic that can be

expressed in this way, we want to uncover that logic.

16

Uncovering the natural logic of these algorithms

Py(y|)
Implies(
M,y) MOy) A

Whenever the model deems valid

the loser to be a valid gen-
eration, it should deem the
winner to be valid too.

yex”

Assumption: Every loss function has an internal logic that can be

expressed in this way, we want to uncover that logic.

17

Uncovering the natural logic of these algorithms

P
Implies(o(yl=)

M(x, Y1) M(XyYw)

And(valid
MO Yw)
Not(M(x,y,)))

yex”

Assumption: Every loss function has an internal logic that can be

expressed in this way, we want to uncover that logic.

18

Uncovering the natural logic of these algorithms

P
Implies(o(yl=)

M(x,y1), M(X,yw)

And(valid
M(X,yYw),
Not(M(x,y,)))

yex”

Observation: The second program is more strict than the first, involves

semantic entailment.

Compilation and decompilation

Compilation
b P

Implies(

) M(X,y1), M(X,yw) _)

Whenever the model deems
the loser to be a valid gen-
eration, it should deem the
winner to be valid too.

again

{(D,0) = —log Py(P | D,0)
—_—

probabilistic logic

19

Compilation and decompilation
p Compilation
Implies(

) M(X,y1), M(X,yw) _)

Whenever the model deems
the loser to be a valid gen-
eration, it should deem the
winner to be valid too.

again

{(D,0) = —log Py(P | D,0)
—_—

probabilistic logic

What we did: defined a novel probabilistic logic for preference modeling,

note: logic useful not only for learning and loss.

19

Compilation and decompilation again

P Decompilation

Implies(

) MOy) M0GY) e—— lepp = — Iogo(log fri((nylb)))

Whenever the model deems
the loser to be a valid gen-
eration, it should deem the
winner to be valid too.

Compilation and decompilation again

Decompilation

P
Implies(
) MOy) M0GY) e—— lepp = — Iogo(log 7;66((};’VIV||)):))

Whenever the model deems
the loser to be a valid gen- €CPD(D7 9) = —log PQ(P | D, 9)
eration, it should deem the

correctness property

winner to be valid too.

)

19

Compilation and decompilation again

Decompilation

P
Implies(oyl
Whenever the model deems
the loser to be a valid gen- €CPD(D7 9) = —log PQ(P ‘ D, 9)

eration, it should deem the
winner to be valid too. correctness property

The second thing we did: Defined a mechanical procedure for

decompilation, proved its correctness, invariance to choice of f.

19

lllustration of approach and results

Input Loss eoﬁpg

Oddso(yiw|x)
floga(log oad?g(yy,\:)>

lllustration of approach and results

Input Loss eogpg

Oddso(yiw|x)
floga(log oad?g(yy,\:)>

Py _ Polywlx)(1—Po(yilx))

5 Po(yilx)(1=Pa(ywx))

|

Core loss equation

lllustration of approach and results

Input Loss eogpg

Oddso(yiw|x)
floga(logioddzz(il‘:))

h)

25 Polywlx)(1=Po(ylx)) SEM(p5) = M(x, yw) A =M(x,y1)

b Po(yilx)(1—Po(ywlx)) SEM(/)g) = M(x, y1) A =M(X, yw)

>

Core loss equation Compositional translation

lllustration of approach and results

Input Loss Lorpo Preference structure P

M0Gyi)s M yw))

P:= Implies(
—logo (log Ldsﬂmx))

Oddsg (y/|x) Pc := XOR(M(x,y1),M(yw)))
Py:=1
Py _ PolywlX)(1=Po(v|x)) SEM(ph) = M(%, yw) A M(x, 1)

5 Po(yilx)(1=Pa(ywx))

>

SEM(p§) = M(x, yi) A =M(x, yu)

Core loss equation Compositional translation

lllustration of approach and results

Thm.

compilation

Input Loss eoapg

decompilation

Preference structure P

P:= Implies(
M0 yi), M yw))

Oddso(yiw|x)
floga(log oadss:(yy,\:)>

h)

Py _ Po(ywl¥)(A=Po(yix))

Pc := XOR(M(x,y1),M(yw)))
Py:=1

SEM(p5) = M(x, yw) A =M(x,y1)

5 Po(yilx)(1=Pa(ywx))

>

Core loss equation

SEM(p§) = M(x, yi) A =M(x, yu)

Compositional translation

20

lllustration of approach and results

Thm.

compilation decompilation

Input Loss Lorpo Preference structure P

M0Gyi)s M yw))

P:= Implies(
—logo (log Oddse(yw\x)>

Oddsg(yi]x) Pc := XOR(M(x,y1),M(yw)))
Py:=1
Py _ Po(ywlx)(1=Po(yi|x)) SEM(p5) = M(x, yw) A —M(x,y1)

5 Po(yilx)(1=Pa(ywx))

>

SEM(p§) = M(x, yi) A =M(x, yu)

Core loss equation Compositional translation

P Preference structure, a core construct in our logic, encoding for

preference losses, has a natural Boolean interpretation.

20

question: Why is this useful to do?

20

How many preference loss functions are there?

(or How many future DPO papers might be written?)

20

Why is this useful? understanding the space

p)

Implies(
MOy) M0 yw)

p(2)

And(
M(X1Yw),
Not(M(x,y/)))

Boolean functions, 2 variables

e
M(x, yw) M(x,y/) SIONN-IE)

T T v X

T F v v

F T X X

F F v X

21

Why is this useful? understanding the space

p() Boolean functions, 2 variables

Implies(/
: MO, yi) MO Yw) M(x,yw) M(x,y,) [PO PO
T T v X
p®) T F 7
And(F T X X
M(X,Yw),
Not(M(x,y/))) i i L _

P Every program (in our logic) is pair of Boolean functions (in n variables),

corr. to v and X, leads to 4% possible loss functions.

21

Why is this useful? understanding the space

p() Boolean functions, 2 variables
Tmplies(. —
) e 1vw) 10y [POO_P0)
T T v X
P T F |l v v
And(F T X X
M(X1Yw),
Nox{(x,y1))) F F 1y X

Loss creation will end up being equivalent to drawing different sets of
v sand X (or blank marks) in a truth table.

21

Why is this useful? understanding the space

p() Boolean functions, 2 variables
Tmplies(. —
) e 1vw) 10y [POO_P0)
T T v X
P T F |l v v
And(F T X X
M(X1Yw),
Nox{(x,y1))) F F 1y X

no reference: 256 losses

Loss creation will end up being equivalent to drawing different sets of
v sand X (or blank marks) in a truth table.

Loss functions as truth tables

Implies(
And(M(x,y/), Ref (X, yw),
And(M(x,yw),Ref(x,y/))

4 variables

Ref (X, yw) M0 y1) Ref(x,yr) M(x,yw)

X

e e B B B e B B M M B B e 2 i
e B B B B e e 3 B B B B B e s
Eon B B W B T e M B e B 3 e B B i B
b T e W B i B i s B B Bt e B B Bt |

w/ reference: 4,294,967,296 losses

22

answer: loads.

22

question: How are losses related to one another?

22

Why is this useful? understanding the structure

p() semantics: P(® = P(1)
Implies((/
) e Hye) Gy [PO PO
T T v X
P T F |l v v
And(F T X X
M(X,Yw)
not (4(x.:))) = F v X

Proposition (Xu et al., 2018): Loss behavior is monotonic w.r.t semantic
entailment: if P®® = PW then ¢(D,6,P®) > ¢(D,0,PW).

Why is this useful? understanding the structure

p() semantics: P(® = P(1)
Implies((/
) e Hye) Gy [PO PO
T T v X
P T F |l v v
And(F T X X
M(X,Yw)
not (4(x.:))) = F v X

Proposition (Xu et al., 2018): Loss is equivalent under semantic
equivalence: If P® = PW then ¢(D,6,P?) = ¢(D,0,PY).

Why is this useful? understanding the structure

p() semantics: P(® = P(1)
Implies((/
) e Hye) Gy [PO PO
T T v X
P T F |l v v
And(F T X X
M(X,Yw)
not (4(x.:))) = F v X

Theorem: ((D,0,P®) > ¢(D,0,PW) (the loss of P is contained in the
loss of P?).

23

answer: Losses are related through their semantics

23

Why is this useful? understanding the structure

p() semantics: P(® = P(1)
Implies((/
) e Hye) Gy [PO PO
T T v X
P T F |l v v
And(F T X X
M(X,Yw)
not (4(x.:))) = F v X

Practical strategy: Start with empirically successful losses, modify

semantics (make more or less constrained), then experiment accordingly.

23

Deriving new losses symbolically, from first principles

Symbolic Program

Implies(

AHd(M(X »Yw)v Ref(x'y/))

)

And(M(x,y;), Ref(x,yw)),

DPO Loss
nalywl®) 1 malylx)
Teetw) 108 gl

— Ioga(log

)

Deriving new losses symbolically, from first principles

Symbolic Program DPO Loss

Implies(
And(M(x,y/),Ref(x,yw)), _ me(ywlx) mo(yilx)
And(M(x,yw), Ref(x,y/)) log | log Tref(Yw|x) log Trefl(y1[X)

)

modify
-

~

Implies(
And(M(x,y;),Ref(x,yw)),
M(xvYW)

)

Deriving new losses symbolically, from first principles

Symbolic Program

DPO Loss

Implies(

AHd(M(X »Yw)v Ref(x 'y/))

)

And(M(x,y;), Ref(x,yw)),

_ m(ywlx) mo(yilx)
|Og o < |0g Tref(Yw|x) |0g ﬂref(}’llx)>

modify
-

~

Implies(

M(xvYW)

)

Novel loss

And(M(x,y;),Ref(x,yw)),

N logo (log Ty b)))

o (v |X)Tref(yw [X) (1= (yw |x))

24

Deriving new losses symbolically, from first principles

Symbolic Program DPO Loss
Implies(

And(M(x,ys),Ref(x,yw)), . Toywlx) To(yilx)

And(M(x,yw), Ref(x,y/)) |Og0< log Tref(Yw|x) log ﬂref(}illx)
)

modify Novel loss
~

Implies(

Sy B i) N (X)) (1= (111x))
) M(x, V) —logo (log m(mx)mef(ywwxxkm(yw\x)))

» High-level programming language for defining new losses.

24

questions: How does our logic work? What do we see?

24

How does the logic work? compilation

M(x,yw) M(x,y1) CPO ORPO unCPO
T T v X \/(_
T F v v v
F T X X X
F F /\/

P
Implies(

L | MO y)s M(xayw)

Whenever the model deems
the loser to be a valid gen-
eration, it should deem the
winner to be valid too.

25

How does the logic work? compilation

P
M(x,yw) M(x,y1) CPO ORPO unCPO Tmplies(
T T v X Ve I . M(x,y,), M(x,yw)
T F v v v
i U X X X \/ Whenever the model deems
F 7\ F v the loser to be a valid gen-

/ eration, it should deem the
winner to be valid too.

{v , X}wi= 1II mlylx)- I 1—-melylx)

win(x,y) whN(x.y)

25

How does the logic work? compilation

P
M(x,yw) M(x,y1) CPO ORPO unCPO Tpiaea(
T T v X ol M), M(xyw)
T F v v v
i i X X X \/ Whenever the model deems
F 7\ F v the loser to be a valid gen-
/ eration, it should deem the

winner to be valid too.
(v, Xtwi= I m(ylx)- I 1-me(y|x)
whN(x,) wSH(x,y)

P Formula probability computed as a weighted count Y v ,, (Chavira and
Darwiche, 2008), loss is — log, semantic loss (Xu et al., 2018).

25

How does the logic work? compilation

P
M(x,yw) M(x,y1) CPO ORPO unCPO Tmplies(
T T v X Ve I . M(x,y,), M(x,yw)
T F v v v
i U X X X \/ Whenever the model deems
F 7\ F v the loser to be a valid gen-

/ eration, it should deem the
winner to be valid too.

{v , X}wi= 1II mlylx)- I 1—-melylx)

win(x,y) whN(x.y)

L= —Ioga<|og§ ;)

column

arbitrary X w

25

How does the logic work? compilation

P
M(x,yw) M(x,y1) CPO ORPO | unCPO Tmplies(
T T v X Ve I . M(x,y,), M(x,yw)
T F v v v
i U X X X \/ Whenever the model deems
F 7\ F v the loser to be a valid gen-

/ eration, it should deem the
winner to be valid too.

{v , X}wi= 1II mlylx)- I 1—-melylx)

win(x,y) whN(x.y)

>V
by = —Ioga(log W)
- X,

column

= —Iogcr(IOg mo(yw | X)(A = 7o(y1 | X))

mo(yr | x)(1 = mo(yw | x)

Lorpo, Pg(P|one hot)

25

How does the logic work? compilation

P
M(x,yw) M(x,y1) CPO ORPO unCPO Tmplies(
T T v X Ve I . M(x,y,), M(x,yw)
T F v v v
i U X X X \/ Whenever the model deems
F 7\ F v the loser to be a valid gen-

/ eration, it should deem the
winner to be valid too.

{v , X}wi= 1II mlylx)- I 1—-melylx)

win(x,y) whN(x.y)

>V
by = —Ioga(log W)
- X,

column

o (Yw | X))

=1 [
°g"< % (v 1 %)

Lcpg, ~Pg(P|one true)

25

observation: losses differ in hard constraints

25

How does the logic work? compilation

P
M(x,yw) M(x,y1) CPO ORPO unCPO Tpiaea(
T T v X ol M), M(xyw)
T F v v v
i i X X X \/ Whenever the model deems
F 7\ F v the loser to be a valid gen-
/ eration, it should deem the

winner to be valid too.

{v , X}wi= 1II mlylx)- I 1—-melylx)

wi=H(x,y) w==M(x,y)
Loss Representation P
CE P:= M(X,yw), Pc:= L
CEUnl | P:= AndM(x,yw), NotM(x,y:)))
Pc:= 1
CPO ;5 core semantic formula

P := Implies(M(x,y;), M(X,yw))
; one—true constraint

Pc := 0rM(x,yi), M(x,yw))
ORPO P := Implies(M(x,y:),M(X,yw))
;3 one—hot constraint

Pc := XORM(X,y1), M(X,yw))

25

How does the logic work? compilation

P
M(x,yw) M(x,y1) CPO ORPO unCPO Tpiaea(
T T v X ol M), M(xyw)
T F v v v
i i X X X \/ Whenever the model deems
F 7\ F v the loser to be a valid gen-
/ eration, it should deem the

winner to be valid too.

{v ., X}wi= I1 mylx)- I 1-me(ylx)
win(x,y) whN(x.y)

P Preference structure: equivalent way of expressing truth table
representations (Richardson et al., 2025),

PZ:(P ,Pc,PA)

Core constraints

25

How does the logic work? compilation

P
M(x,yw) M(x,y1) CPO ORPO |unCPO Tmplies(
T T v X Ve yl M(x,y,), M(x,yw)
T F v v v
i U X X X Vi | Whenever the model deems
F 7\ F v the loser to be a valid gen-

/ eration, it should deem the
winner to be valid too.

{v , X}wi= 1II mlylx)- I 1—-melylx)

win(x,y) whN(x.y)

v
b = — Ioga(log W)
- X,

column

— logo mo(yi | X)ma(yw | x) + (1 = mo(yi1 | X))
=l ("’g 7o (1 | X)(1— 7oy | X)))

novel loss without constraints, Py (P|T)

25

note: M(x,y;) = M(x,yn) = —M(x,y;) VM(X, yw)

25

What properties do real losses have?

P
M(x,yw) M(x,y1) CPO ORPO |unCPO Tmplies(
T T v X Ve yl M(x,y,), M(x,yw)
T F v v v
i U X X X Vi | Whenever the model deems
F 7\ F v the loser to be a valid gen-

/ eration, it should deem the
winner to be valid too.

{v , X}wi= 1II mlylx)- I 1—-melylx)

win(x,y) whN(x.y)

v
b = — Ioga(log W)
- X,

column

— logo mo(yi | X)ma(yw | x) + (1 = mo(yi1 | X))
=l ("’g 7o (1 | X)(1— 7oy | X)))

novel loss without constraints, Py (P|T)

25

Mapping out these loss spaces semantically

25

The no reference loss landscape

Entailment
Semantic neighborhoods
/\ Known losses Novel losses
M(X, Yo) A =M(X, Y1) —M(x, y;) / 7 l
gfUnl
ZCEUnl \/
échnl

Lorpo v/
ZCCPO ZunCFO

> <I—

ESCE 71 “*CPO
M(X, Ya) lox v M0 1) = M0 V)

most constrained > least constrained

P Loss lattice: semantic structure of space, ordering.

26

question: Are any of these losses good?

26

The no reference loss landscape

Semantic neighborhoods

Entailment

/\ Known losses Novel losses
W06, yar) A 0005, 12) - /.
équnl
‘ZCEUnl \/
echnl
Lorpo V'
ZCCPO ZunCFO
~ \r Z ‘/
CPO
[sCE 4
M(X, Yu) lox v M0 1) = M0 V)
. \ .
most constrained 7 least constrained

Winner logprob

Loser logprob

— cpo
CfUNL
-8 — ccpo -8

T 20 b0 e 80 1000

W0 1000

-10 -8 -6 pry 2 0
Loser logprob (validation)

T e 4 2 o
Winner logprob (validation)

W0 e
Training step Training step

Training dynamics Inference

The full landscape, reference approaches

M(x, yw) A =M(x, 1) —M(x,yr) M(x, yr) = M(x, yw)
Ref(x, yw) Ref(x, yw) A (M(x, y/) V —Ref(x, y/)) Ref(x,yw) A (M(x,y;) V ~Ref(x,y;))
= M(x, yw) A =M(x, y1) = M(x, yw) A =M(x, y1) = M(x, yw

; N gty

Ref (X, yw) A (M(x,ys) V ~Ref(x,y))
Re£ (%, ir) A (M6, Vo) V —ReE(x, 1)) (M y) V ~Re£(x 91)) Re£(x,) AM(%, 1)
M0 vur) A ~M(x, Y1) Ref(x, Yur) = M0 yw) (| = MGoyw) A MG y1) = M yo) AReE(%,3))

P The semantics of DPO-style reference losses can be straightforwardly

computed from no reference approaches.

27

The full landscape, reference approaches

M(x, yw) A =M(x, 1) —M(x,yr) M(x, yr) = M(x, yw)
Ref(x, yw) Ref(x, yw) A (M(x, y/) V —Ref(x, y/)) Ref(x,yw) A (M(x,y;) V ~Ref(x,y;))
= M(x, yw) A =M(x, y1) = M(x, yw) A =M(x, y1) = M(x, yw

[cevn v [71

Re£(x, yw) A (=M(x, yw) V —Re£(x, y1))
= M(x, yw) A =M(x,)

Ref (%, yw) — M(x, Yw)

Ref(x, yw) A (M(x,ys) V —~Ref(x,y/))

:L Ml y1) AR)
Z“A ctunl |)
e Aa——

cCPO 5 unCPO |

A(=M(x, yw) V —Ref(x,y;)) Ref(x,yw) AM(x,ys)

= M(x,yw) A M(x,y/)

— M(x,yw) ARef(x,y/)

P> Many new losses to explore and experiment with!

27

Blueprint for future empirical exploration of loss space

27

Conclusions

P New ideas about using symbolic techniques to formally characterize the

semantics of LLM algorithms, preference learning.

28

Conclusions

P New ideas about using symbolic techniques to formally characterize the

semantics of LLM algorithms, preference learning.

1. Understanding the full space of loss functions (finding: it's a huge
space, many novel variations yet to be explored)

2. Understanding the structure of the space and relationships between
different losses (finding: tied to the semantics of the losses).

28

Conclusions

P New ideas about using symbolic techniques to formally characterize the

semantics of LLM algorithms, preference learning.

1. Understanding the full space of loss functions (finding: it's a huge
space, many novel variations yet to be explored)

2. Understanding the structure of the space and relationships between
different losses (finding: tied to the semantics of the losses).

The procedure: write a (high-level) symbolic program, or modify an

existing one, compile into a loss and experiment (then repeat)

28

Conclusions

P New ideas about using symbolic techniques to formally characterize the

semantics of LLM algorithms, preference learning.

1. Understanding the full space of loss functions (finding: it's a huge
space, many novel variations yet to be explored)

2. Understanding the structure of the space and relationships between
different losses (finding: tied to the semantics of the losses).

The procedure: write a (high-level) symbolic program, or modify an

existing one, compile into a loss and experiment (then repeat)

P many other areas to look at: analysis of transformers, semantics of

data, reinforcement learning, chain-of-thought, LLM agents ...

28

Thank you.

29

Adding a reference model

P:= Implies(
And(M(x,y;),Ref(x,yw)),
And(M(x,yw), Ref (x,y/))

Whenever the model being
tuned deems the loser to
be a valid generation and
the reference model deems
— the winner to be valid, the
tuned model should deem
the winner to be valid too,

)

and the reference should
deem the loser to be valid.

30

Adding a reference model

Whenever the model being
tuned deems the loser to
P:= Implies(be a valid generation and
And(M(X VYi), R.ef(x Yw)), the reference model deems
— the winner to be valid, the
And(M(X'YW)’ Ref(x,y/)) tuned model should deem
) the winner to be valid too,
and the reference should
deem the loser to be valid.

P Peculiar semantics, but the logic makes sense, e.g., we want to maximize

o (1o T3 1) _ o e |)

mo(yr | x) Tref(y1 | X)

negating left side of implication (i.e., making M(x,y/) and Ref(x,yw)
false) and making the right side true is logical.

30

References |

Bogin, B., Yang, K., Gupta, S., Richardson, K., Bransom, E., Clark, P., Sabharwal, A.,
and Khot, T. (2024). Super: Evaluating agents on setting up and executing tasks
from research repositories. Proceedings of EMNLP.

Chavira, M. and Darwiche, A. (2008). On probabilistic inference by weighted model
counting. Artificial Intelligence, 172(6-7):772-799.

Chen, J., Yuan, S., Ye, R., Majumder, B. P., and Richardson, K. (2023). Put your
money where your mouth is: Evaluating strategic planning and execution of IIm
agents in an auction arena. arXiv preprint arXiv:2310.05746.

Dai, J., Pan, X., Sun, R., Ji, J., Xu, X., Liu, M., Wang, Y., and Yang, Y. (2024). Safe
rlhf: Safe reinforcement learning from human feedback. In The Twelfth
International Conference on Learning Representations.

Friedman, D., Wettig, A., and Chen, D. (2023). Learning transformer programs.
Advances in Neural Information Processing Systems, 36:49044—49067.

Jeffrey, R. C. (1965). The logic of decision. University of Chicago press.

Ji, J., Liu, M., Dai, J., Pan, X., Zhang, C., Bian, C., Chen, B., Sun, R., Wang, Y.,
and Yang, Y. (2024). Beavertails: Towards improved safety alignment of llm via a
human-preference dataset. Advances in Neural Information Processing Systems, 36.

Meng, Y., Xia, M., and Chen, D. (2024). Simpo: Simple preference optimization with
a reference-free reward. arXiv preprint arXiv:2405.14734.

Merrill, W. and Sabharwal, A. (2023). A logic for expressing log-precision
transformers. Advances in neural information processing systems, 36:52453-52463.

31

References |l

Rescher, N. (1967). The logic of decision and action. University of Pittsburgh Pre.

Richardson, K., Srikumar, V., and Sabharwal, A. (2025). Understanding the logic of
direct preference alignment through logic. Proceedings of ICML.

Weiss, G., Goldberg, Y., and Yahav, E. (2021). Thinking like transformers. In
International Conference on Machine Learning, pages 11080-11090. PMLR.

Xu, J., Zhang, Z., Friedman, T., Liang, Y., and Broeck, G. (2018). A Semantic Loss
Function for Deep Learning with Symbolic Knowledge. In International Conference
on Machine Learning, pages 5498-5507.

Yang, A. and Chiang, D. (2024). Counting like transformers: Compiling temporal
counting logic into softmax transformers. arXiv preprint arXiv:2404.04393.

Yang, R., Chen, J., Zhang, Y., Yuan, S., Chen, A., Richardson, K., Xiao, Y., and
Yang, D. (2025). Selfgoal: Your language agents already know how to achieve
high-level goals. Proceedings of NAACL.

Zhang, Y., Yuan, S., Hu, C., Richardson, K., Xiao, Y., and Chen, J. (2024).
Timearena: Shaping efficient multitasking language agents in a time-aware
simulation. Proceedings of ACL.

32

	References

