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General purpose large language models (LLMs)
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The Naloma workshop on natural logic is an academic event focused
on research in natural logic, a subfield of logic and computational
linguistics that models reasoning using the structures present in
natural language, rather than traditional formal logic systems. The
workshop brings together researchers to discuss recent advances,
applications, and challenges in this area. Generally, these workshops
feature talks and discussions about inference, semantics, and

computational models for reasoning in plain language. The "Naloma"
name is short for "Natural Logic Meets Machine Learning," indicating
its focus on the intersection of these fields.




General purpose large language models (LLMs)
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RESpONSe - on research in natural logic, a subfield of logic and computational
linguistics that models reasoning using the structures present in
natural language, rather than traditional formal logic systems. The
workshop brings together researchers to discuss recent advances,
applications, and challenges in this area. Generally, these workshops
feature talks and discussions about inference, semantics, and

computational models for reasoning in plain language. The "Naloma"
name is short for "Natural Logic Meets Machine Learning," indicating
its focus on the intersection of these fields.

P General purpose models: Trained at massive scales, used as-is and

directly for a wide range of problems.



Models have far exceeded expectations



Language models as agent simulators

LLMs as agents in competitive
environments, games
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P Can we use LMs to simulate complex social dynamics? (Chen et al.,
2023; Zhang et al., 2024; Yang et al., 2025)
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Valuable tool for running social science experiments, testing theories of

language interaction, complex reasoning, adversarial language experts.



Language models as part of complex systems

0 ML Experiment Execution Engine

Machine
learning
experiment

ChatGPT
Model

generated
code

AutoHodslFormultiplecho

Experiment automation

P> SUPER (Bogin et al., 2024), benchmark for setting up and executing

research code repositories.



Language models as part of complex systems

0 ML Experiment Execution Engine

Machine
learning
experiment

ChatGPT

Model
generated
code

Experiment automation

A tool for scientific discovery, automated experiment execution, helping

non-experts engage in research.



Lots of optimism, hubris, Nobel prizes....



Missing algorithmic and semantic foundations.
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How do we get to general purpose LLMs? recipe
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OLMo: fully open-source general purpose LMs
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P Dilemma: we know vanishingly little about commercial models, models

and datasets in general are huge, opaque.
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An obvious problem for safety and applications, but also for deciding

what research to do, how to innovate.
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Modeling the formal semantics of LLM algorithms
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Today: can we formally characterize the semantics of preference tuning

and alignment? Both for understanding and innovation; armchair NLP.




Modeling the formal semantics of LLM algorithms

Model alignment
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Questions: What do we do when we tune models to preferences? Can

these underlying principles help us to discover better algorithms?



Preference learning and alignment



Offline preference alignment in a nutshell

P Given an offline or static dataset consisting of pairwise preferences for
input x:
i=1

optimize a policy model y ~ mg(- | x) (LLM) to such preferences.
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P Given an offline or static dataset consisting of pairwise preferences for
input x:
o= {00
i=1

optimize a policy model y ~ mg(- | x) (LLM) to such preferences.

Safety example (Dai et al., 2024; Ji et al., 2024)

x : Will drinking brake fluid kill you?
yi 1 No, drinking brake fluid will not kill you

Yw : Drinking brake fluid will not kill you, but it can be extremely
dangerous... [it] can lead to vomiting, dizziness, fainting, ....



Offline preference alignment in a nutshell

P Given an offline or static dataset consisting of pairwise preferences for
input x:
o= {00
i=1

optimize a policy model y ~ mg(- | x) (LLM) to such preferences.

Safety example (Dai et al., 2024; Ji et al., 2024)

x : Will drinking brake fluid kill you?
yi 1 No, drinking brake fluid will not kill you

Yw : Drinking brake fluid will not kill you, but it can be extremely
dangerous... [it] can lead to vomiting, dizziness, fainting, ....

Note: What constitutes a winner or loser is fuzzy.



Direct Preference Alignment (DPA) approaches

Direct Preference Optimization:
Your Language Model is Secretly a Reward Model

Rafael Rafailov*! Archit Sharma*! Eric Mitchell*!
Stefano Ermon'? Christopher D. Manning’ Chelsea Finn'

fStanford University  CZ Biohub
{rafailov,architsh,eric.mitchell}@cs.stanford.edu

Abstract

While large-scale unsupervised language models (LMs) learn broad world knowl-
edge and some reasoning skills, achieving precise control of their behavior is
difficult due to the completely unsupervised nature of their training. Existing
methods for gaining such steerability collect human labels of the relative quality of
model generations and fine-tune the unsupervised LM to align with these prefer-
ences, often with reinforcement learning from human feedback (RLHF). However,
RLHF is a complex and often unstable procedure, first fitting a reward model that
reflects the human preferences, and then fine-tuning the large unsupervised LM
using reinforcement learning to maximize this estimated reward without drifting
00 far from the original model. In this paper we introduce a new parameterization
of the reward model in RLHF that enables extraction of the corresponding optimal
policy in closed form, allowing us to solve the standard RLHF problem with only a
simple classification loss. The resulting algorithm, which we call Direct Prefer-
ence Optimization (DPO), is stable, performant, and computationally lightweight,
eliminating the need for sampling from the LM during fine-tuning or performing
significant hyperparameter tuning. Our experiments show that DPO can fine-tunc
LM:s to align with human preferences as well as or better than existing methods.
Notably, fine-tuning with DPO exceeds PPO-based RLHF in ability to control sen-
timent of generations, and matches or improves response quality in summarization
and single-turn dialogue while being substantially simpler to implement and train.




DPO loss function

Blerenten | ~ 1080 (3log 24625 — 51og 2653 )|

Intuitively: reasoning about relationship be-
tween predictions of policy mg and reference s



These equations are not easy to understand



DPO loss function
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Question: What kind of discrete reasoning prob-
lems do these losses encode?



The many varieties of DPO

DPO loss
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DPO variants

Method Objective

RRHF (91]  max (0, ~ Ly 10g mo(yelz) + rl log mo(ul) ) — Alog mo(yel)

SLIC-HF [96] max (0,6 — log mo(yu|) + log mo(u1|)) — Alog ma (yu|z)
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from Meng et al. (2024)

No reference approaches (e.g., CPO, ORPO, only involves a single model)

versus multi-model, reference approaches (DPO).
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Questions: How are all these variations related to one another, nature of

the space of losses?



Why this can be frustrating



Haven't these semantic questions been looked at before?

Analytic philosophy: Much work on the semantics of pairwise

preference, rich languages for expressing ideas.

RICHARD C | FFFREY THE STATUS OF VARIOUS Pl‘z:::gug::hmncxnxs
Pmiennce Principle Wright  Sosa Max‘tm P* px po
1. pPg — ~(qPp) v v + o+ +
2. (pPq & gPr) — pPr v v / + o+ o+
8. pPg— ~qP~p x v (+;1 + 4+
4. ~gP~p—pPq x Voo + o+
5. pPg — (P&"‘GP("‘P&) v x + 4+ 4+
6. (p& ~q) P(~p &g) f x 4+ + 4+
7 [~(‘°P~g)&~(~ ;;? & ~(gPng) &
~(~qPg)] [~£ q) & ~(qPp)] v + + +
ppbchbelte, 1 11
. [~(@P~ ~(~qPq) & gP~p] > pPr -
10. pPg o[ &) PG &7) &(p &~ .
11 [(P & V) P(g &) & (p & ~7) Pg & ~7))
Pg () (+)* +
:g [~(PP4) & ~(qu)] —’ ~(PP7) v v -
}gf pvq)i’y-.[p i ’ - - =
Sovond i& Crabns gfz" ;, - -z
on - PP vV = = =
s 18. ?pf%w}:m(i iy S
19. (pPr & qPr) — (p & q) Pr _ = =

(Jeffrey, 1965) Semantic foundations for the logic of preference Rescher (1967)



The language of machine learning
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P Frustration: the language of machine learning is not very rich, hard to

express complex ideas, come up with improved algorithms, barrier.
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The language of machine learning

Loss functions
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i

Specification or theory of preference?

P Frustration: the language of machine learning is not very rich, hard to

express complex ideas, come up with improved algorithms, barrier.

Broader goal: High-level modeling languages for specifying and
better understanding LLMs and their algorithms.

11



Formalization of preference losses
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Going away from these opaque equations
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Preference learning as a discrete reasoning problem

Loss Function
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Preference learning as a discrete reasoning problem

Loss Function
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Two models, four predictions

» Problem: Given some loss function, can we derive a symbolic program or
expression that characterizes the semantics of that loss?



Preference learning as a discrete reasoning problem

Symbolic Program Loss Function
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High-level model behavior

» Problem: Given some loss function, can we derive a symbolic program or
expression that characterizes the semantics of that loss?
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» Problem: Given some loss function, can we derive a symbolic program or
expression that characterizes the semantics of that loss?

1. Compilation: Translating specifications into loss, well studied.
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Preference learning as a discrete reasoning problem

Symbolic Program Loss Function
Implies(
And(M(x,y;),Ref(X,yw)), _ me(ywlx) mp(yilx)
And(M(x,yw ), Ref(x,y/)) log o { log Tref(Yw|) log Tref(y1]x)
)
Decompilation < » Compilation

» Problem: Given some loss function, can we derive a symbolic program or
expression that characterizes the semantics of that loss?

1. Compilation: Translating specifications into loss, well studied.

2. Decompilation:Losses to specifications (inverse), less explored.

12



Formal analysis via decompilation in general

Model

Transformer weights




Formal analysis via decompilation in general

Symbolic Program

RASP, LTL, FO(M)

Model

Transformer weights
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Formal analysis via decompilation in general

Symbolic Program

RASP, LTL, FO(M)

Model

Decompilation ¢

Transformer weights

P We know what the target languages are (Weiss et al., 2021; Merrill and Sabharwal,

% Compilation

2023; Yang and Chiang, 2024), how to compile, decompile (Friedman et al., 2023).

13



Formal analysis via decompilation in general

Model Behavior

CoT Trace




Formal analysis via decompilation in general

Symbolic Program Model Behavior

? CoT Trace

Decompilation ¢ » Compilation



Formal analysis via decompilation in general

Symbolic Program Model Behavior
? CoT Trace
Decompilation ¢ » Compilation

P Not always clear what the target language is or should be.

14



Language model programming: ESSLLI 2025

Lecturers

Kyle Richardson (Allen Institute for Al)

Gijs Wilnholds (Leiden Institute of Advanced Computer Science)

Slides

lecture

" i i RASP.

lecture 2: declarative approaches to model training and fine-tuning, the semantic loss and weighted model
counting, other approaches.

lecture 3: high-level techniques for dir i and LLM alignment, formal
i of ions.
lecture 4: declarati ilistic approaches to test-time i LM ion, consistency,

tillng LLMs to tractable models, logic programming.

lecture 5: chain-of-thought, imper (discrete) probabilistic
programming,

background logic notes, extended notes on transformers

extra lectures Prompting as Gra

Helpful Resources

Below are some pointers to code resources:

« languages [scallop], [problog], [pyDatalog], [ima] [rasp], [NumPy Rasp), [deepprobiog]
+ automated reasoning tools/circuits 23 solverl, [python-sat], [pysdd], [cirkit

+ NLP and general ML [transformers], [PyTorch), [pylon-lb], [nf datasets], [nf hub}

+ other useful utilties [sympy]

Useful tutorials: scratch lecture 1), Lectures on Probabilistic
Programming, Tractable Probabilistic Models

https://github.com/yakazimir/LMProgramming


https://github.com/yakazimir/LMProgramming

What is the right programming language for preference?

15


https://github.com/yakazimir/LMProgramming

Declarative models of preference

Implies(
M(x, Y1) M(x,yw)

)




Declarative models of preference

Model predicts loser Model predicts winner
/

Implies(
; M(x,y ) M(X, yw)

Conceptually: Model predications are logical propositions, Boolean

variables inside of formulas, weighted by prediction probability.



Declarative models of preference

Model predicts loser Model predicts winner
/

Implies(
M(x, Y1) M(x,yw)

)

w(M(x,y)) = mu(y | x)

Conceptually: Model predications are logical propositions, Boolean

variables inside of formulas, weighted by prediction probability.



Declarative models of preference

Model predicts loser Model predicts winner
/

Implies(
) M(x,y ) M(X, yw)

Whenever the model deems the loser
to be a valid generation, it should
deem the winner to be valid too.

Conceptually: Predictions are connected through Boolean operators,

express constraints on predictions; pg as formulas.

16



Uncovering the natural logic of these algorithms

Model predicts loser Model predicts winner
/

Implies(
M(x, Y1) M(X,yw)

)

Whenever the model deems the loser
to be a valid generation, it should
deem the winner to be valid too.

Assumption: Every loss function has an internal logic that can be

expressed in this way, we want to uncover that logic.

16



Uncovering the natural logic of these algorithms

Py(y| )
Implies(
M,y ) MOy ) A

Whenever the model deems valid

the loser to be a valid gen-
eration, it should deem the
winner to be valid too.

yex”

Assumption: Every loss function has an internal logic that can be

expressed in this way, we want to uncover that logic.

17



Uncovering the natural logic of these algorithms

P
Implies( o(yl=)

M(x, Y1 ) M(XyYw)

And( valid
MO Yw )
Not(M(x,y,)))

yex”

Assumption: Every loss function has an internal logic that can be

expressed in this way, we want to uncover that logic.

18



Uncovering the natural logic of these algorithms

P
Implies( o(yl=)

M(x,y1 ), M(X,yw)

And( valid
M(X,yYw ),
Not(M(x,y,)))

yex”

Observation: The second program is more strict than the first, involves

semantic entailment.



Compilation and decompilation

Compilation
b P

Implies(

) M(X,y1 ), M(X,yw) _)

Whenever the model deems
the loser to be a valid gen-
eration, it should deem the
winner to be valid too.

again

{(D,0) = —log Py(P | D,0)
—_—

probabilistic logic

19



Compilation and decompilation
p Compilation
Implies(

) M(X,y1 ), M(X,yw) _)

Whenever the model deems
the loser to be a valid gen-
eration, it should deem the
winner to be valid too.

again

{(D,0) = —log Py(P | D,0)
—_—

probabilistic logic

What we did: defined a novel probabilistic logic for preference modeling,

note: logic useful not only for learning and loss.

19



Compilation and decompilation again

P Decompilation

Implies(

) MOy ) M0GY)  e—— lepp = — Iogo(log fri((nylb)))

Whenever the model deems
the loser to be a valid gen-
eration, it should deem the
winner to be valid too.




Compilation and decompilation again

Decompilation

P
Implies(
) MOy ) M0GY)  e—— lepp = — Iogo(log 7;66((};’VIV||)):))

Whenever the model deems
the loser to be a valid gen- €CPD(D7 9) = —log PQ(P | D, 9)
eration, it should deem the

correctness property

winner to be valid too.

)

19



Compilation and decompilation again

Decompilation

P
Implies( oyl
Whenever the model deems
the loser to be a valid gen- €CPD(D7 9) = —log PQ(P ‘ D, 9)

eration, it should deem the
winner to be valid too. correctness property

The second thing we did: Defined a mechanical procedure for

decompilation, proved its correctness, invariance to choice of f.

19



lllustration of approach and results

Input Loss eoﬁpg

Oddso(yiw|x)
floga(log oad?g(yy,\:)>




lllustration of approach and results

Input Loss eogpg

Oddso(yiw|x)
floga(log oad?g(yy,\:)>

Py _ Polywlx)(1—Po(yilx))

5 Po(yilx)(1=Pa(ywx))

|

Core loss equation



lllustration of approach and results

Input Loss eogpg

Oddso(yiw|x)
floga(logioddzz(il‘:))

h)

25 Polywlx)(1=Po(ylx)) SEM(p5) = M(x, yw) A =M(x,y1)

b Po(yilx)(1—Po(ywlx)) SEM(/)g) = M(x, y1) A =M(X, yw)

>

Core loss equation Compositional translation



lllustration of approach and results

Input Loss Lorpo Preference structure P

M0Gyi)s M yw))

P:= Implies(
—logo ( log Ldsﬂmx))

Oddsg (y/|x) Pc := XOR(M(x,y1),M(yw)))
Py:=1
Py _ PolywlX)(1=Po(v|x)) SEM(ph) = M(%, yw) A M(x, 1)

5 Po(yilx)(1=Pa(ywx))

>

SEM(p§) = M(x, yi) A =M(x, yu)

Core loss equation Compositional translation



lllustration of approach and results

Thm.

compilation

Input Loss eoapg

decompilation

Preference structure P

P:= Implies(
M0 yi), M yw))

Oddso(yiw|x)
floga(log oadss:(yy,\:)>

h)

Py _ Po(ywl¥)(A=Po(yix))

Pc := XOR(M(x,y1),M(yw)))
Py:=1

SEM(p5) = M(x, yw) A =M(x,y1)

5 Po(yilx)(1=Pa(ywx))

>

Core loss equation

SEM(p§) = M(x, yi) A =M(x, yu)

Compositional translation
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lllustration of approach and results

Thm.

compilation decompilation

Input Loss Lorpo Preference structure P

M0Gyi)s M yw))

P:= Implies(
—logo ( log Oddse(yw\x)>

Oddsg(yi]x) Pc := XOR(M(x,y1),M(yw)))
Py:=1
Py _ Po(ywlx)(1=Po(yi|x)) SEM(p5) = M(x, yw) A —M(x,y1)

5 Po(yilx)(1=Pa(ywx))

>

SEM(p§) = M(x, yi) A =M(x, yu)

Core loss equation Compositional translation

P Preference structure, a core construct in our logic, encoding for

preference losses, has a natural Boolean interpretation.

20



question: Why is this useful to do?

20



How many preference loss functions are there?

(or How many future DPO papers might be written?)

20



Why is this useful? understanding the space

p)

Implies(
MOy ) M0 yw)

p(2)

And(
M(X1Yw),
Not(M(x,y/)))

Boolean functions, 2 variables

e
M(x, yw)  M(x,y/) SIONN-IE)

T T v X

T F v v

F T X X

F F v X

21



Why is this useful? understanding the space

p() Boolean functions, 2 variables

Implies( /
: MO, yi) MO Yw) M(x,yw) M(x,y,) [ PO PO
T T v X
p®) T F 7
And( F T X X
M(X,Yw ),
Not(M(x,y/))) i i L _

P Every program (in our logic) is pair of Boolean functions (in n variables),

corr. to v and X, leads to 4% possible loss functions.

21



Why is this useful? understanding the space

p() Boolean functions, 2 variables
Tmplies( . —
) e 1vw) 10y [POO_P0)
T T v X
P T F |l v v
And( F T X X
M(X1Yw),
Nox{(x,y1))) F F 1y X

Loss creation will end up being equivalent to drawing different sets of
v sand X (or blank marks) in a truth table.

21



Why is this useful? understanding the space

p() Boolean functions, 2 variables
Tmplies( . —
) e 1vw) 10y [POO_P0)
T T v X
P T F |l v v
And( F T X X
M(X1Yw),
Nox{(x,y1))) F F 1y X

no reference: 256 losses

Loss creation will end up being equivalent to drawing different sets of
v sand X (or blank marks) in a truth table.



Loss functions as truth tables

Implies(
And(M(x,y/), Ref (X, yw ),
And(M(x,yw ),Ref(x,y/))

4 variables

Ref (X, yw) M0 y1) Ref(x,yr) M(x,yw)

X

e e B B B e B B M M B B e 2 i
e B B B B e e 3 B B B B B e s
Eon B B W B T e M B e B 3 e B B i B
b T e W B i B i s B B Bt e B B Bt |

w/ reference: 4,294,967,296 losses

22



answer: loads.

22



question: How are losses related to one another?

22



Why is this useful? understanding the structure

p() semantics: P(® = P(1)
Implies( (/
) e Hye) Gy [ PO PO
T T v X
P T F |l v v
And( F T X X
M(X,Yw )
not (4(x.:))) = F v X

Proposition (Xu et al., 2018): Loss behavior is monotonic w.r.t semantic
entailment: if P®® = PW then ¢(D,6,P®) > ¢(D,0,PW).



Why is this useful? understanding the structure

p() semantics: P(® = P(1)
Implies( (/
) e Hye) Gy [ PO PO
T T v X
P T F |l v v
And( F T X X
M(X,Yw )
not (4(x.:))) = F v X

Proposition (Xu et al., 2018): Loss is equivalent under semantic
equivalence: If P® = PW then ¢(D,6,P?) = ¢(D,0,PY).



Why is this useful? understanding the structure

p() semantics: P(® = P(1)
Implies( (/
) e Hye) Gy [ PO PO
T T v X
P T F |l v v
And( F T X X
M(X,Yw )
not (4(x.:))) = F v X

Theorem: ((D,0,P®) > ¢(D,0,PW) (the loss of P is contained in the
loss of P?).

23



answer: Losses are related through their semantics

23



Why is this useful? understanding the structure

p() semantics: P(® = P(1)
Implies( (/
) e Hye) Gy [ PO PO
T T v X
P T F |l v v
And( F T X X
M(X,Yw )
not (4(x.:))) = F v X

Practical strategy: Start with empirically successful losses, modify

semantics (make more or less constrained), then experiment accordingly.

23



Deriving new losses symbolically, from first principles

Symbolic Program

Implies(

AHd(M(X »Yw )v Ref(x'y/))

)

And(M(x,y; ), Ref(x,yw)),

DPO Loss
nalywl®) 1 malylx)
Teetw) 108 gl

— Ioga( log

)




Deriving new losses symbolically, from first principles

Symbolic Program DPO Loss

Implies(
And(M(x,y/),Ref(x,yw)), _ me(ywlx) mo(yilx)
And(M(x,yw ), Ref(x,y/)) log | log Tref(Yw|x) log Trefl(y1[X)

)

modify
-

~

Implies(
And(M(x,y;),Ref(x,yw)),
M(xvYW)

)




Deriving new losses symbolically, from first principles

Symbolic Program

DPO Loss

Implies(

AHd(M(X »Yw )v Ref(x 'y/))

)

And(M(x,y; ), Ref(x,yw)),

_ m(ywlx) mo(yilx)
|Og o < |0g Tref(Yw|x) |0g ﬂref(}’llx)>

modify
-

~

Implies(

M(xvYW)

)

Novel loss

And(M(x,y;),Ref(x,yw)),

N logo ( log Ty b)) )

o (v |X)Tref(yw [X) (1= (yw |x))

24



Deriving new losses symbolically, from first principles

Symbolic Program DPO Loss
Implies(

And(M(x,ys),Ref(x,yw)), . Toywlx) To(yilx)

And(M(x,yw ), Ref(x,y/)) |Og0< log Tref(Yw|x) log ﬂref(}illx)
)

modify Novel loss
~

Implies(

Sy B i ) N (X)) (1= (111x))
) M(x, V) —logo ( log m(mx)mef(ywwxxkm(yw\x)))

» High-level programming language for defining new losses.

24



questions: How does our logic work? What do we see?

24



How does the logic work? compilation

M(x,yw)  M(x,y1) CPO ORPO  unCPO
T T v X \/(_
T F v v v
F T X X X
F F /\/

P
Implies(

L | MO y)s M(xayw)

Whenever the model deems
the loser to be a valid gen-
eration, it should deem the
winner to be valid too.

25



How does the logic work? compilation

P
M(x,yw)  M(x,y1) CPO ORPO  unCPO Tmplies(
T T v X Ve I . M(x,y,), M(x,yw)
T F v v v
i U X X X \/ Whenever the model deems
F 7\ F v the loser to be a valid gen-

/ eration, it should deem the
winner to be valid too.

{v , X}wi= 1II mlylx)- I 1—-melylx)

win(x,y) whN(x.y)
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How does the logic work? compilation

P
M(x,yw)  M(x,y1) CPO ORPO  unCPO Tpiaea(
T T v X ol M), M(xyw)
T F v v v
i i X X X \/ Whenever the model deems
F 7\ F v the loser to be a valid gen-
/ eration, it should deem the

winner to be valid too.
(v, Xtwi= I m(ylx)- I 1-me(y|x)
whN(x,) wSH(x,y)

P Formula probability computed as a weighted count Y v ,, (Chavira and
Darwiche, 2008), loss is — log, semantic loss (Xu et al., 2018).

25



How does the logic work? compilation

P
M(x,yw)  M(x,y1) CPO ORPO  unCPO Tmplies(
T T v X Ve I . M(x,y,), M(x,yw)
T F v v v
i U X X X \/ Whenever the model deems
F 7\ F v the loser to be a valid gen-

/ eration, it should deem the
winner to be valid too.

{v , X}wi= 1II mlylx)- I 1—-melylx)

win(x,y) whN(x.y)

L= —Ioga<|og§ ; )

column

arbitrary X w

25



How does the logic work? compilation

P
M(x,yw)  M(x,y1) CPO ORPO | unCPO Tmplies(
T T v X Ve I . M(x,y,), M(x,yw)
T F v v v
i U X X X \/ Whenever the model deems
F 7\ F v the loser to be a valid gen-

/ eration, it should deem the
winner to be valid too.

{v , X}wi= 1II mlylx)- I 1—-melylx)

win(x,y) whN(x.y)

>V
by = —Ioga(log W)
- X,

column

= —Iogcr(IOg mo(yw | X)(A = 7o(y1 | X))

mo(yr | x)(1 = mo(yw | x)

Lorpo, Pg(P|one hot)

25



How does the logic work? compilation

P
M(x,yw)  M(x,y1) CPO ORPO  unCPO Tmplies(
T T v X Ve I . M(x,y,), M(x,yw)
T F v v v
i U X X X \/ Whenever the model deems
F 7\ F v the loser to be a valid gen-

/ eration, it should deem the
winner to be valid too.

{v , X}wi= 1II mlylx)- I 1—-melylx)

win(x,y) whN(x.y)

>V
by = —Ioga(log W)
- X,

column

o (Yw | X))

=1 [
°g"< % (v 1 %)

Lcpg, ~Pg(P|one true)

25



observation: losses differ in hard constraints
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How does the logic work? compilation

P
M(x,yw)  M(x,y1) CPO ORPO  unCPO Tpiaea(
T T v X ol M), M(xyw)
T F v v v
i i X X X \/ Whenever the model deems
F 7\ F v the loser to be a valid gen-
/ eration, it should deem the

winner to be valid too.

{v , X}wi= 1II mlylx)- I 1—-melylx)

wi=H(x,y) w==M(x,y)
Loss Representation P
CE P:= M(X,yw), Pc:= L
CEUnl | P:= AndM(x,yw), NotM(x,y:)))
Pc:= 1
CPO ;5 core semantic formula

P := Implies(M(x,y;), M(X,yw))
; one—true constraint

Pc := 0rM(x,yi), M(x,yw))
ORPO P := Implies(M(x,y:),M(X,yw))
;3 one—hot constraint

Pc := XORM(X,y1), M(X,yw))

25



How does the logic work? compilation

P
M(x,yw)  M(x,y1) CPO ORPO  unCPO Tpiaea(
T T v X ol M), M(xyw)
T F v v v
i i X X X \/ Whenever the model deems
F 7\ F v the loser to be a valid gen-
/ eration, it should deem the

winner to be valid too.

{v ., X}wi= I1 mylx)- I 1-me(ylx)
win(x,y) whN(x.y)

P Preference structure: equivalent way of expressing truth table
representations (Richardson et al., 2025),

PZ:( P ,Pc,PA)

Core  constraints
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How does the logic work? compilation

P
M(x,yw)  M(x,y1) CPO ORPO |unCPO Tmplies(
T T v X Ve yl M(x,y,), M(x,yw)
T F v v v
i U X X X Vi | Whenever the model deems
F 7\ F v the loser to be a valid gen-

/ eration, it should deem the
winner to be valid too.

{v , X}wi= 1II mlylx)- I 1—-melylx)

win(x,y) whN(x.y)

v
b = — Ioga(log W)
- X,

column

— logo mo(yi | X)ma(yw | x) + (1 = mo(yi1 | X))
=l ("’g 7o (1 | X)(1— 7oy | X)) )

novel loss without constraints, Py (P|T)

25



note: M(x,y;) = M(x,yn) = —M(x,y;) VM(X, yw)

25



What properties do real losses have?

P
M(x,yw)  M(x,y1) CPO ORPO |unCPO Tmplies(
T T v X Ve yl M(x,y,), M(x,yw)
T F v v v
i U X X X Vi | Whenever the model deems
F 7\ F v the loser to be a valid gen-

/ eration, it should deem the
winner to be valid too.

{v , X}wi= 1II mlylx)- I 1—-melylx)

win(x,y) whN(x.y)

v
b = — Ioga(log W)
- X,

column

— logo mo(yi | X)ma(yw | x) + (1 = mo(yi1 | X))
=l ("’g 7o (1 | X)(1— 7oy | X)) )

novel loss without constraints, Py (P|T)
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Mapping out these loss spaces semantically
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The no reference loss landscape

Entailment
Semantic neighborhoods
/\ Known losses Novel losses
M(X, Yo ) A =M(X, Y1) —M(x, y;) / 7 l
gfUnl
ZCEUnl \/
échnl

Lorpo v/
ZCCPO ZunCFO

> <I—

ESCE 71 “*CPO
M(X, Ya) lox v M0 1) = M0 V)

most constrained > least constrained

P Loss lattice: semantic structure of space, ordering.
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question: Are any of these losses good?
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The no reference loss landscape

Semantic neighborhoods

Entailment

/\ Known losses Novel losses
W06, yar) A 0005, 12) - /.
équnl
‘ZCEUnl \/
echnl
Lorpo V'
ZCCPO ZunCFO
~ \r Z ‘/
CPO
[sCE 4
M(X, Yu) lox v M0 1) = M0 V)
. \ .
most constrained 7 least constrained

Winner logprob

Loser logprob

— cpo
CfUNL
-8 — ccpo -8

T 20 b0 e 80 1000

W0 1000

-10 -8 -6 pry 2 0
Loser logprob (validation)

T e 4 2 o
Winner logprob (validation)

W0 e
Training step Training step

Training dynamics Inference



The full landscape, reference approaches

M(x, yw) A =M(x, 1) —M(x,yr) M(x, yr) = M(x, yw)
Ref(x, yw) Ref(x, yw) A (M(x, y/) V —Ref(x, y/)) Ref(x,yw) A (M(x,y;) V ~Ref(x,y;))
= M(x, yw) A =M(x, y1) = M(x, yw) A =M(x, y1) = M(x, yw

; N gty

Ref (X, yw) A (M(x,ys) V ~Ref(x,y))
Re£ (%, ir) A (M6, Vo) V —ReE(x, 1)) (M y) V ~Re£(x 91)) Re£(x, ) AM(%, 1)
M0 vur) A ~M(x, Y1) Ref(x, Yur) = M0 yw) (| = MGoyw) A MG y1) = M yo) AReE(%,3))

P The semantics of DPO-style reference losses can be straightforwardly

computed from no reference approaches.
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The full landscape, reference approaches

M(x, yw) A =M(x, 1) —M(x,yr) M(x, yr) = M(x, yw)
Ref(x, yw) Ref(x, yw) A (M(x, y/) V —Ref(x, y/)) Ref(x,yw) A (M(x,y;) V ~Ref(x,y;))
= M(x, yw) A =M(x, y1) = M(x, yw) A =M(x, y1) = M(x, yw

[cevn v [71

Re£(x, yw) A (=M(x, yw) V —Re£(x, y1))
= M(x, yw) A =M(x, )

Ref (%, yw) — M(x, Yw)

Ref(x, yw) A (M(x,ys) V —~Ref(x,y/))

:L Ml y1) AR )
Z“A ctunl | )
e Aa——

cCPO 5 unCPO |

A(=M(x, yw) V —Ref(x,y;)) Ref(x,yw) AM(x,ys)

= M(x,yw) A M(x,y/)

— M(x,yw) ARef(x,y/)

P> Many new losses to explore and experiment with!

27



Blueprint for future empirical exploration of loss space
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Conclusions

P New ideas about using symbolic techniques to formally characterize the

semantics of LLM algorithms, preference learning.
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Conclusions

P New ideas about using symbolic techniques to formally characterize the

semantics of LLM algorithms, preference learning.

1. Understanding the full space of loss functions (finding: it's a huge
space, many novel variations yet to be explored)

2. Understanding the structure of the space and relationships between
different losses (finding: tied to the semantics of the losses).
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Conclusions

P New ideas about using symbolic techniques to formally characterize the

semantics of LLM algorithms, preference learning.

1. Understanding the full space of loss functions (finding: it's a huge
space, many novel variations yet to be explored)

2. Understanding the structure of the space and relationships between
different losses (finding: tied to the semantics of the losses).

The procedure: write a (high-level) symbolic program, or modify an
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P New ideas about using symbolic techniques to formally characterize the

semantics of LLM algorithms, preference learning.

1. Understanding the full space of loss functions (finding: it's a huge
space, many novel variations yet to be explored)

2. Understanding the structure of the space and relationships between
different losses (finding: tied to the semantics of the losses).

The procedure: write a (high-level) symbolic program, or modify an

existing one, compile into a loss and experiment (then repeat)

P many other areas to look at: analysis of transformers, semantics of

data, reinforcement learning, chain-of-thought, LLM agents ...
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Thank you.
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Adding a reference model

P:= Implies(
And(M(x,y;),Ref(x,yw)),
And(M(x,yw ), Ref (x,y/))

Whenever the model being
tuned deems the loser to
be a valid generation and
the reference model deems
— the winner to be valid, the
tuned model should deem
the winner to be valid too,

)

and the reference should
deem the loser to be valid.
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Adding a reference model

Whenever the model being
tuned deems the loser to
P:= Implies( be a valid generation and
And(M(X VYi ), R.ef(x Yw )), the reference model deems
— the winner to be valid, the
And(M(X'YW )’ Ref(x,y/)) tuned model should deem
) the winner to be valid too,
and the reference should
deem the loser to be valid.

P Peculiar semantics, but the logic makes sense, e.g., we want to maximize

o (1o T3 1) _ o e | )

mo(yr | x) Tref(y1 | X)

negating left side of implication (i.e., making M(x,y/) and Ref(x,yw)
false) and making the right side true is logical.
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