Dataset Creation for Visual Entailment using Generative Al

Rob Reijtenbach, Suzan Verberne, Gijs Wijnholds. Presenter: Mehrnoosh Sadrzadeh

Introduction

• Natural language inference (NLI) is a classification problem for pairs of two texts:

a premise and a hypothesis

- The pair is labeled as entailment, neutral, or contradiction
- In **visual entailment** (VE) tasks, the premise is substituted by an image; the hypothesis is still in text
- Example:

- Two woman are holding packages.
- The sisters are hugging goodbye while holding to go packages after just eating lunch.
- The men are fighting outside a deli.

- Entailment
- Neutral

Contradiction

Premise Hypothesis

Answer

https://github.com/necla-ml/SNLI-VE

Our motivation and goals

- Dataset creation for visual entailment is costly
- We evaluate the use of generative AI for VE dataset creation
- This allows cheaper and easier dataset creation.
- We introduce a synthetic version of the SNLI-VE dataset called Synthetic-NLI-VE
- We evaluate the quality of models trained on the synthetic dataset on real data and compare to models trained on real data

Data

- **SNLI-VE** (Xie et al., 2019)
 - combining the SNLI dataset with the Flickr30k dataset
 - 31,783 photos of everyday activities with 5 different captions
- SICK-VTE (lokawa et al., 2024)
 - a visual entailment version of (a subset of) the SICK dataset with a multilingual component
 - For 488 unique images there are 2,899 sentence pairs, with 1,930 Entailment and 969 Contradiction.

Xie et al. 2019. Visual entailment: A novel task for fine-grained image understanding. lokawa et al. 2024. Multilingual visual-textual entailment benchmark with diverse linguistic phenomena.

Example

• Example of a photo from the SNLI dataset with 5 different captions

- A bearded man, and a girl in a red dress are getting married.
- A wedding party walks out of a building.
- The group of people are assembling for a wedding.
- A man and woman dressed for a wedding function.
- A woman holds a man's arm at a formal event.

Methods (1)

Image generation:

- Use the caption (premise) text from SNLI as input prompts in a generative model
- creating an image for every premise caption.
- This results in a dataset similar to SNLI-VE, but with a unique image for every premise.

Methods (2)

Image generation:

- Use the caption (premise) text from SNLI as input prompts in a generative model
- creating an image for every premise caption.
- This results in a dataset similar to SNLI-VE, but with a unique image for every premise.

A wedding party walks out of a building.

The group of people are assembling for a wedding.

A man and woman dressed for a wedding function.

Model: Stability AI's Stable Diffusion, checkpoint: Realistic Vision v51

https://github.com/Stability-Al/generative-models

Evaluation (1)

- Intrinsic evaluation: Ranked similarity
 - For a given original image, rank the generated images from the full synthetic dataset
 - The 5 generated images corresponding to the original image should be in the top-100

Evaluation (2)

- Extrinsic evaluation: classification
 - Using the synthetic images to train a classifier
 - Model: CLIP for visual entailment (Song et al. 2022)
 - Evaluation on real data, comparison to a model trained on real data

Haoyu Song et al. (2022) CLIP models are few-shot learners: Empirical studies on VQA and visual entailment

Results: intrinsic evaluation

- Of the 100 most similar synthetic images to each real image, on average only 1.6 were generated from one of that real image's captions
- This is because out of ~160k generated images many other images are similar to the real image

Example: this was counted as a negative because the generated image (b) was not generated for one of the captions of this original image (a). But they are clearly similar.

(a) Original

Results: extrinsic evaluation (in-domain)

• Accuracies of both models on both test sets (original and generated) of SNLI-VE:

Train set	Test: Original	Test: Generated
Original	70.3%	71.1%
Generated	68.9%	73.2%

- The model trained on original images performs better on the generated test set than it does on the original test set.
 - This could suggest that the generated test set is "easier" to classify.
- The model trained on generated data and tested on original data has a somewhat lower performance in this experiment, but the difference is small.

Extrinsic evaluation (out-domain)

• Accuracies of both models on the SICK-VTE (original and synthetic) datasets:

Train set	Test: Original	Test: Synthetic
Original	50.7%	51.4%
Generated	47.2%	47.6%

- Performance is relatively poor, given a majority baseline of 66%.
 - This result is in line with the findings of Talman and Chatzikyriakidis (2019), who found similar issues when transfering models trained on the SNLI dataset to the SICK dataset.
- Again, the model trained on generated data performs slightly worse compared to the model trained on original data.

Conclusions

Synthetic dataset generation for visual entailment is a viable option

The dataset proved to have similar utility in a classification task compared to the original, humancreated data

But: Cross-domain evaluation was relatively poor

Future work could investigate:

- further optimization of the generative model
- generating more than one image per caption to increase diversity in the data
- the use of multiple classification models for evaluation

Thank you!

https://huggingface.co/datasets/robreijtenbach/Synthetic-NLI-VE

