Minimal Expression Replacement GEneralization test for NLI

5th NALOMA@ESSLLI, 5 August 2025

Mădălina Zgreabăn, Tejaswini Deoskar, Lasha Abzianidze

Universiteit Utrecht

NLI task is popular, but...

We know the definition of the NLI task: $\langle P, H, l \rangle$.

A very popular task: over 100 NLI datasets exist

One of the reasons of its popularity is being an easy task on reasoning:

- It is a three-way classification task.
- Simple/silly heuristics work due to annotation artifacts.
 - Hypothesis-only bias (Gururangan et al. 2018, Poliak et al. 2018, Tsuchiya 2018)
 - Word overlap bias (McCoy et al. 2019, Naik et al., 2018, Glockner et al. 2018)
 - Inverse word overlap bias (Rajaee et al, 2022)
 - Negation/antonymy bias (Lai&Hockenmaier 2014, Naik et al., 2018)

Not every dog without a collar is barking loudly

E Some **animal** without a red collar is not barking

Generalization & NLI

Breaking NLI (Glockner et al. 2018):

The man is holding a saxophone

C The man is holding an electric guitar

HANS (McCoy et al. 2019):

The lawyer near the actor ran

NE The actor ran

IMPPRESS (Jeretic et al., 2020):

Jo ate some of the cake

E Jo didn't eat all of the cake

PaRTE (Verma et al. 2023):

$$\langle P, H, l \rangle \Longrightarrow \langle Para(P), Para(H), l \rangle$$

Generalization & NLI: but....

The datasets for generalization evaluation often have an adversarial nature:

small string edit with label change

Several elements involved in new tests, which makes it difficult to single out the reason of poor performance:

label, syntax, and sentence length change

Requires manual work:

writing templates

validating the generated NLI problems

MERGE test

MERGE: Seed problem-based evaluation

Pattern accuracy (PA) with a threshold

$$Acc_{th=0.5} = 1$$

$$Acc_{th=0.75} = 1$$

$$Acc_{th=0.95} = 0$$

Sample-based evaluation

Sample/variant accuracy (SA) $Acc_v = 0.75$

Original/seed NLI problem

P: A small girl carries a girl.

H: There is a small girl.

 \mathcal{M}_1 , ... \mathcal{M}_n

Automatic generation of variants with MLMs

NLI model's predictions

P: A small boy carries a boy.

H: There is a **small boy**.

H: There is a **small dog**.

Ε

÷

P: A small dog carries a dog.

÷

H: There is a little girl.

P: A happy girl carries a girl.

H: There is a happy girl.

Precaution!

Certain minimal expression replacements can lead to unsound NLI

Don't replace original words with co-occurring words!

Are we good? Not really:

Don't replace with words being in semantic relation with co-occurring ones!

Are we good? Not really:

Minimality of MERGE

Variant problems require the exact same reasoning as the original/seed

problems:

P: A small girl carries a girl.

H: There is a small girl.

P: A small boy carries a boy.

H: There is a small boy.

The sort of minimal string edits:

P: A blond boy carries a boy.

H: There is a blond boy.

Many biases are preserved:

We replace single words with single words

The (reverse) word overlap

Negation/antonymy — Antonyms are different words; hence they remain

Hypothesis only

Usually, give-away words only occurs in a hypothesis

Pattern/seed-based evaluation

Inspired by **SpaceNLI**: each pattern has n-number of samples Similar to the idea behind ROC curve

Generating variants

Original/seed NLI problem

P: A small girl carries a girl.

H: There is a small girl.

Identify and MASK shared words

Get fillers from MLMs $M=\{m_1,m_2\}$ and distill suggestions

Skip seed problems with insufficient inflation

Creating NLI problem variants

Degree of inflation $d \ge 20$

P: A small boy carries a boy.

H: There is a **small boy**.

P: A small dog carries a dog.

P: A ____ girl carries a girl.

E

H: There is a ____ girl.

 $W_{m_1}(P, \text{small}_{>}^c)$ $W_{m_2}(P, \text{small}_{>}^c)$ $W_M(P, \text{small}_{>}^c)$ $W_M(H, \text{small}_{>}^c)$

IAI (DII amal

 $W_M(PH, \text{small}_>^c)$

Generating variants (2)

Suggested words $W_M(PH, w^c)$ are such that:

- They differ from the co-occurring words in an NLI problem PH.
- At least one MLM from M suggests it and validates it, i.e., gives it a higher probability (>) than the original word.
- They get the same word class c tag as the original word.
- They are suggested for both premise P and hypothesis H.

If w is not in the tokenizer vocabulary of a MLM, then the suggestion set is empty, e.g., $W_M(PH, \text{mentorship}_>^c) = \emptyset$

Setup of experiments

Masked Language Models (MLMs) used:

Roberta-base & Bert-base (both cased)

The test part of the Stanford NLI dataset:

~10K problems

Suffering from the hypothesis-only bias

For sufficient number of seeds: $W_M(PH, w_>^c) = W_M(P, w_>^c) \cup W_M(H, w_>^c)$

Several NLI models:

Model	Training set	SNLI test
BERT	SNLI train	90.48
RoBERTa	SNLI train	90.06
DeBERTa	SNLI train	91.70
BART	SNLI train + MNLI, FEVER-NLI, ANLI	92.03

Sample & pattern accuracy (PA) scores

Sample accuracy (SA) drops for the variants compared to the seed problems.

Easiest word classes

Removing the effect of different seed NLI problems, i.e. comparing on the same seed

90.0

Accuracy threshold (%)

92.5

95.0

97.5

85.0

Do MLMs favor native NLI models?

can be seen at the extreme th>97%.

However, MLMs do not favor native NLI models.

Easiest: shared suggestions

Easier: RoBERTa

Least easy: BERT

Conclusion

MERGE test:

- Auto generating sample variants with MLMs
- Most friendly generalization test
 - Maintains the underlying reasoning
 - Preserves the biases of the original samples

Increases to 60% when suggestion words are originating from both P and H

Models cannot maintain the same accuracy even for threshold of 50%.

Replacements with the easiest word classes: Adj, Noun, Verb.

No observable favoritism of NLI models from the native MLMs.

Future work might involve more NLI models, MLMs, and NLI datasets for stronger results.

Comparing various replacements

Variants obtained with cleaner replacements are easier.

However, variants obtained with replacements being non-existent words (e.g., scrambled characters) are also easier.

Lasha Abzianidze

Contrasting PA across models

